气流磨处理对烧结钨粉微观组织和力学性能的影响

李星宇 章林 秦明礼 魏子晨 阙忠游 曲选辉

李星宇, 章林, 秦明礼, 魏子晨, 阙忠游, 曲选辉. 气流磨处理对烧结钨粉微观组织和力学性能的影响[J]. 粉末冶金技术, 2021, 39(3): 251-257. doi: 10.19591/j.cnki.cn11-1974/tf.2021030003
引用本文: 李星宇, 章林, 秦明礼, 魏子晨, 阙忠游, 曲选辉. 气流磨处理对烧结钨粉微观组织和力学性能的影响[J]. 粉末冶金技术, 2021, 39(3): 251-257. doi: 10.19591/j.cnki.cn11-1974/tf.2021030003
LI Xing-yu, ZHANG Lin, QIN Ming-li, WEI Zi-chen, QUE Zhong-you, QU Xuan-hui. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(3): 251-257. doi: 10.19591/j.cnki.cn11-1974/tf.2021030003
Citation: LI Xing-yu, ZHANG Lin, QIN Ming-li, WEI Zi-chen, QUE Zhong-you, QU Xuan-hui. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(3): 251-257. doi: 10.19591/j.cnki.cn11-1974/tf.2021030003

气流磨处理对烧结钨粉微观组织和力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021030003
基金项目: 国家重点研发计划专项资助项目(2017YFB0305600);国家自然科学基金资助项目(51974029,52074032,52071013);中央高校基本科研业务费(FRF-GF-20-27B,FRF-BD-20-23A)
详细信息
    通讯作者:

    E-mail:zhanglincsu@163.com (章林)

    quxh@ustb.edu.cn (曲选辉)

  • 中图分类号: TG146.4

Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders

More Information
  • 摘要: 采用气流磨分级技术对商业钨粉进行改性,研究气流磨处理和不同粒度搭配对钨粉粉末烧结体微观组织和力学性能的影响。结果表明,经气流磨分级处理后,粒度分布较窄的钨粉能实现良好的堆积均匀性,消除团聚体在烧结过程中形成的不规则粗孔,提升粉末烧结均匀性,提高烧结后期整体相对密度;烧结相对密度由90.7%提高至92.8%,抗弯强度由238.5 MPa提升至292.4 MPa。获得粒度分布窄、分散性好的钨粉可以消除烧结体中不规则粗孔,是提升烧结体力学性能的关键。
  • 图  1  对喷式气流磨工作原理示意图

    Figure  1.  Schematic diagram of the fluidized bed opposed jet milling

    图  2  气流磨处理前后的粉末形貌:(a)原粉W0;(b)气流磨W1;(c)气流磨W2;(d)气流磨W3

    Figure  2.  Powder morphology before and after jet milling: (a) W0 raw powders; (b) W1 jet milled powders; (c) W2 jet milled powders; (d) W3 jet milled powders

    图  3  不同批次粉末的粒度分布

    Figure  3.  Particle size distribution of the different powders

    图  4  气流磨处理前后粉末的X射线衍射图谱(a)和Williamson-Hall公式拟合曲线(b)

    Figure  4.  XRD patterns (a) and the fitted curves of Williamson-Hall equation (b) for the powders before and after jet milling

    图  5  不同批次粉末烧结后的孔隙结构:(a)(e)原粉W0;(b)(f)气流磨W1;(c)(g)气流磨W2;(d)(h)气流磨W3

    Figure  5.  Pore structure of the different sintered samples: (a) (e) W0; (b) (f) W1; (c)(g) W2; (d) (h) W3

    图  6  不同批次粉末烧结后的孔隙孔径和长径比分布:(a)原粉W0;(b)气流磨W1;(c)气流磨W2;(d)气流磨W3

    Figure  6.  Pore size and the aspect ratio of the different sintered samples: (a) W0; (b) W1; (c) W2; (d) W3

    图  7  不同批次粉末烧结试样的抗弯实验载荷–位移曲线

    Figure  7.  Load–displacement curves of the different sintered samples in the bending experiments

    表  1  不同批次粉末的粒度分布参数

    Table  1.   Particle size distribution parameters of the different powders

    批次D10 / μmD50 / μmD90 / μm比表面积 / (m2·kg−1)
    原粉W05.9512.5723.03187.2
    气流磨W15.308.0211.79259.5
    气流磨W25.498.9115.72231.6
    气流磨W32.997.1411.53348.7
    下载: 导出CSV

    表  2  不同批次粉末的烧结后性能参数

    Table  2.   Properties parameters of the different sintered samples

    批次相对密度 / %平均晶粒尺寸 / μm抗弯强度 / MPa
    原粉W090.710.5238.5±21.3
    气流磨W192.810.1292.4±10.5
    气流磨W292.610.3263.1±14.6
    气流磨W392.310.4248.3±15.1
    下载: 导出CSV
  • [1] Lassner E, Schubert W D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. New York: Kluwer Academic and Plenum Publishers, 1999
    [2] Zhao M Y, Fan J L, Liu T, et al. Current situation and development trend of China tungsten processing industry. China Tungsten Ind, 2010, 25(2): 26 doi: 10.3969/j.issn.1009-0622.2010.02.007

    赵慕岳, 范景莲, 刘涛, 等. 中国钨加工业的现状与发展趋势. 中国钨业, 2010, 25(2): 26 doi: 10.3969/j.issn.1009-0622.2010.02.007
    [3] Liu W S, Long L P, Ma Y Z. Research and preparation methods for high-purity tungsten. Powder Metall Technol, 2012, 30(3): 223 doi: 10.3969/j.issn.1001-3784.2012.03.012

    刘文胜, 龙路平, 马运柱. 高纯钨研究现状及制备工艺方法综述. 粉末冶金技术, 2012, 30(3): 223 doi: 10.3969/j.issn.1001-3784.2012.03.012
    [4] Liao B B, Wei X Y. The application of tungsten and molybdenum materials in sapphire single crystal furnace. Cement Carb, 2018, 35(2): 134

    廖彬彬, 魏修宇. 钨钼材料在蓝宝石单晶炉中的应用. 硬质合金, 2018, 35(2): 134
    [5] Liu W D. Research progress of preparation technology of tungsten sputtering targets for integrated circuits. China Tungsten Ind, 2020, 35(1): 36 doi: 10.3969/j.issn.1009-0622.2020.01.007

    刘文迪. 集成电路用钨溅射靶材制备技术的研究进展. 中国钨业, 2020, 35(1): 36 doi: 10.3969/j.issn.1009-0622.2020.01.007
    [6] Chen J, Xiong N, Ge Q L, et al. Density uniformity of the tungsten crucible. China Tungsten Ind, 2017, 32(4): 35 doi: 10.3969/j.issn.1009-0622.2017.04.007

    陈锦, 熊宁, 葛启录, 等. 钨坩埚密度均匀性研究. 中国钨业, 2017, 32(4): 35 doi: 10.3969/j.issn.1009-0622.2017.04.007
    [7] Li X Y, Zhang L, Dong Y H, et al. Pressureless two-step sintering of ultrafine-grained tungsten. Acta Mater, 2020, 186: 116 doi: 10.1016/j.actamat.2020.01.001
    [8] Chen J, Xiong N, Ge Q L, et al. Manufacturing technology of tungsten crucibles. China Tungsten Ind, 2016, 31(1): 63 doi: 10.3969/j.issn.1009-0622.2016.01.012

    陈锦, 熊宁, 葛启录, 等. 钨坩埚的制备技术. 中国钨业, 2016, 31(1): 63 doi: 10.3969/j.issn.1009-0622.2016.01.012
    [9] Lin F J T, De Jonghe L C, Rahaman M N. Microstructure refinement of sintered alumina by a two-step sintering technique. J Am Ceram Soc, 1997, 80(9): 2269
    [10] Dynys F W, Halloran J W. Influence of aggregates on sintering. J Am Ceram Soc, 1984, 67(9): 596 doi: 10.1111/j.1151-2916.1984.tb19601.x
    [11] Evans A G. Considerations of inhomogeneity effects in sintering. J Am Ceram Soc, 1982, 65(10): 497 doi: 10.1111/j.1151-2916.1982.tb10340.x
    [12] Lange F F. Sinterability of agglomerated powders. J Am Ceram Soc, 1984, 67(2): 83 doi: 10.1111/j.1151-2916.1984.tb09620.x
    [13] Huang H, Qin M L, Qu X H, et al. Study on jet milling processing of tungsten powder. Rare Met Mater Eng, 2012, 41(12): 2210 doi: 10.3969/j.issn.1002-185X.2012.12.030

    黄化, 秦明礼, 曲选辉, 等. 气流磨处理钨粉的研究. 稀有金属材料与工程, 2012, 41(12): 2210 doi: 10.3969/j.issn.1002-185X.2012.12.030
    [14] Berthiaux H, Chiron C, Dodds J. Modelling fine grinding in a fluidized bed opposed jet mill: Part Ⅱ: Continuous grinding. Powder Technol, 1999, 106(1-2): 88 doi: 10.1016/S0032-5910(99)00050-9
    [15] Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram. Acta Metall, 1953, 1(1): 22 doi: 10.1016/0001-6160(53)90006-6
    [16] Venkateswarlu K, Chandra Bose A, Rameshbabu N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis. Phys B, 2010, 405(20): 4256 doi: 10.1016/j.physb.2010.07.020
    [17] Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004

    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004
    [18] Kingery W D, Francois B. The sintering of crystalline oxides, I. Interactions between grain boundaries and pores, [in] Sintering and Related Phenomena. New York: Gordon and Breach Science Publishers, 1967
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  130
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回