Y2O3–CeO2双相弥散强化对Mo合金晶粒度及拉伸性能的影响

段琳琳 冯鹏发 党晓明

段琳琳, 冯鹏发, 党晓明. Y2O3–CeO2双相弥散强化对Mo合金晶粒度及拉伸性能的影响[J]. 粉末冶金技术, 2021, 39(3): 223-228. doi: 10.19591/j.cnki.cn11-1974/tf.2021030006
引用本文: 段琳琳, 冯鹏发, 党晓明. Y2O3–CeO2双相弥散强化对Mo合金晶粒度及拉伸性能的影响[J]. 粉末冶金技术, 2021, 39(3): 223-228. doi: 10.19591/j.cnki.cn11-1974/tf.2021030006
DUAN Lin-lin, FENG Peng-fa, DANG Xiao-ming. Effect of Y2O3–CeO2 two-phase dispersion strengthening on the grain size and tensile properties of Mo alloys[J]. Powder Metallurgy Technology, 2021, 39(3): 223-228. doi: 10.19591/j.cnki.cn11-1974/tf.2021030006
Citation: DUAN Lin-lin, FENG Peng-fa, DANG Xiao-ming. Effect of Y2O3–CeO2 two-phase dispersion strengthening on the grain size and tensile properties of Mo alloys[J]. Powder Metallurgy Technology, 2021, 39(3): 223-228. doi: 10.19591/j.cnki.cn11-1974/tf.2021030006

Y2O3–CeO2双相弥散强化对Mo合金晶粒度及拉伸性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021030006
基金项目: 国家重点研发计划专项资助项目(2017YFB0306000,2017YFB0305600)
详细信息
    通讯作者:

    E-mail:duanll99@sina.com

  • 中图分类号: TG146.4+12

Effect of Y2O3–CeO2 two-phase dispersion strengthening on the grain size and tensile properties of Mo alloys

More Information
  • 摘要: 采用纳米喷雾掺杂技术和粉末冶金方法制备了含不同质量分数氧化钇(Y2O3)和氧化铈(CeO2)的Mo–Y–Ce合金,分析了Y2O3和CeO2双相弥散强化对Mo合金晶粒度和室温力学性能的影响。结果表明,Y2O3可抑制个别晶粒异常长大,并具有沉淀强化效果。Mo–Y合金丝的力学性能与Y2O3掺杂量密切相关,当Y2O3质量分数为0.60%时,ϕ1.8-mm Mo–Y合金丝抗拉强度为1050 MPa,屈服强度为923 MPa;CeO2因与Mo基体具有半共格关系而具有较好的韧化效果,当CeO2质量分数为0.06%~0.08%时,Mo–Y–Ce合金烧结态晶粒尺寸达10 μm以下,ϕ1.8-mm Mo–Y–Ce合金丝抗拉强度为1130 MPa,屈服强度为1018 MPa,延伸率达到28.5%。ϕ0.18-mm Mo–Y–Ce合金丝抗拉强度达2510 MPa。实验优化出Mo–Y–Ce双相弥散强化Mo合金的最优成分为Mo–0.6Y2O3–(0.06~0.08)CeO2
  • 图  1  ϕ1.8-mm Mo–Y合金丝室温力学性能与Y2O3质量分数

    Figure  1.  Mechanical properties of the ϕ1.8-mm Mo–Y alloy wires with the different mass fraction of Y2O3 at the room temperature

    图  2  ϕ0.18-mm Mo–Y合金丝的抗拉强度与Y2O3质量分数

    Figure  2.  Tensile strength of the ϕ0.18-mm Mo–Y alloy wires with the different mass fraction of Y2O3

    图  3  ϕ0.18-mm Mo–Y合金丝室温拉伸断口形貌:(a)Mo–0.47Y2O3;(b)Mo–0.6Y2O3;(c)Mo–0.8Y2O3;(d)Mo–1.0Y2O3

    Figure  3.  Tensile fracture of the ϕ0.18-mm Mo–Y alloy wires at the room temperature: (a) Mo–0.47Y2O3; (b) Mo–0.6Y2O3; (c) Mo–0.8Y2O3; (d) Mo–1.0Y2O3

    图  4  ϕ1.8-mm Mo–Y–Ce合金丝室温力学性能与CeO2质量分数

    Figure  4.  Mechanical properties of the ϕ1.8-mm Mo–Y–Ce alloy wires with the different mass fraction of CeO2 at the room temperature

    图  5  ϕ0.18-mm Mo–Y–Ce合金抗拉强度与CeO2质量分数

    Figure  5.  Tensile strength of the ϕ0.18-mm Mo–Y–Ce alloy wires with the different mass fraction of Y2O3

    图  6  ϕ0.18-mm Mo–0.6Y2O3–0.08CeO2合金丝室温拉伸断口形貌

    Figure  6.  Tensile fracture surface of the ϕ0.18-mm Mo–0.6 Y2O3–0.08CeO2 alloy wires at the room temperature

    图  7  ϕ0.18-mm Mo–0.6Y2O3–0.08CeO2合金烧结态金相组织

    Figure  7.  Metallographic structure of the sintered ϕ0.18-mm Mo–0.6Y2O3–0.08CeO2 alloys

    表  1  Mo–Y合金丝中Y2O3设计成分

    Table  1.   Composition of Y2O3 in the Mo–Y alloy wires

    编号1#2#3#4#
    Y2O3质量分数 / %0.470.600.801.00
    下载: 导出CSV

    表  2  Mo–0.6Y2O3–Ce合金丝中CeO2设计成分

    Table  2.   Composition of CeO2 in the Mo–0.6Y2O3–Ce alloy wires

    编号1#2#3#4#5#
    CeO2质量分数 / %0.030.060.080.120.15
    下载: 导出CSV

    表  3  ϕ1.8-mm Mo–Y合金丝室温力学性能

    Table  3.   Mechanical properties of the ϕ1.8-mm Mo–Y alloy wires at the room temperature

    Mo–Y合金屈服强度 / MPa抗拉强度 / MPa延伸率 / %屈强比
    Mo–0.47Y2O3920104511.70.88
    Mo–0.6Y2O3923105014.00.90
    Mo–0.8Y2O387599312.50.88
    Mo–1.0Y2O38509739.00.87
    下载: 导出CSV

    表  4  ϕ0.18-mm Mo–Y合金丝的抗拉强度

    Table  4.   Tensile strength of the ϕ0.18-mm Mo–Y alloy wires

    Mo–Y合金抗拉强度 / MPa
    Mo–0.47Y2O32226
    Mo–0.6Y2O32363
    Mo–0.8Y2O32226
    Mo–1.0Y2O32120
    下载: 导出CSV

    表  5  ϕ1.8-mm Mo–Y–Ce合金丝室温力学性能

    Table  5.   Mechanical properties of the ϕ1.8-mm Mo–Y–Ce alloy wires at the room temperature

    Mo–Y–Ce合金屈服强度 / MPa抗拉强度 / MPa延伸率 / %屈强比
    Mo–0.6Y2O3–0.03CeO2883100522.70.88
    Mo–0.6Y2O3–0.06CeO21018113024.00.90
    Mo–0.6Y2O3–0.08CeO286896828.50.89
    Mo–0.6Y2O3–0.12CeO2975108725.80.90
    Mo–0.6Y2O3–0.15CeO289098725.00.91
    下载: 导出CSV

    表  6  ϕ0.18-mm Mo–Y–Ce合金丝抗拉强度

    Table  6.   Tensile strength of the ϕ0.18-mm Mo–Y–Ce alloy wires

    Mo–Y–Ce合金抗拉强度 / MPa
    Mo–0.6Y2O3–0.03 CeO22075
    Mo–0.6Y2O3–0.06 CeO22235
    Mo–0.6Y2O3–0.08 CeO22510
    Mo–0.6Y2O3–0.12 CeO22510
    Mo–0.6Y2O3–0.15 CeO22320
    下载: 导出CSV
  • [1] Chen Y F, Xie J P, Wang A Q, et al. Research status and development trend of molybdenum and molybdenum alloy sputtering target materials. Powder Metall Technol, 2018, 36(5): 393

    陈艳芳, 谢敬佩, 王爱琴, 等. 钼及钼合金溅射靶材的研究现状与发展趋势. 粉末冶金技术, 2018, 36(5): 393
    [2] Xu K D. The Material Science and Engineering of Molybdenum. Beijing: Metallurgical Industry Press, 2014

    徐克玷. 钼的材料科学与工程. 北京: 冶金工业出版社, 2014
    [3] Hu B L, Wang K S, Hu P, et al. Fracture behavior of the La-doped molybdenum-titanium-zirconium alloy. Mater Sci Eng A, 2019, 759: 167 doi: 10.1016/j.msea.2019.05.031
    [4] Iorio L E, Bewlay B P, Larsen M. Analysis of AKS- and lanthanum-doped molybdenum wire. Int J Refract Met Hard Mater, 2006, 24(4): 306 doi: 10.1016/j.ijrmhm.2005.10.004
    [5] Guo L, Song R, Dan X G, et al. Present research status of preparation technology of rare earth molybdenum alloys and strengthening-toughening mechanism. China Molybdenum Ind, 2017, 41(2): 45

    郭磊, 宋瑞, 淡新国, 等. 稀土钼合金制备工艺及强韧化机理研究现状. 中国钼业, 2017, 41(2): 45
    [6] Zhao H. Research and development on the sintering techniques of molybdenum and molybdenum alloys. Powder Metall Technol, 2019, 37(5): 382

    赵虎. 钼及钼合金烧结技术研究及发展. 粉末冶金技术, 2019, 37(5): 382
    [7] Zhang G J, Liu G, Sun Y J, et al. Microstructure and strengthening mechanisms of molybdenum alloy wires doped with lanthanum oxide particles. Int J Refract Met Hard Mater, 2009, 27(1): 173 doi: 10.1016/j.ijrmhm.2008.06.007
    [8] Wang X G, Han Q, Zhao B H. Study on the room-temperature plasticity and toughness of rare earth oxide-doped molybdenum sheet. Chin J Rare Met, 2003, 27(1): 80 doi: 10.3969/j.issn.0258-7076.2003.01.017

    王新刚, 韩强, 赵宝华. 稀土高温钼板室温塑韧性研究. 稀有金属, 2003, 27(1): 80 doi: 10.3969/j.issn.0258-7076.2003.01.017
    [9] Zhang G J, Sun Y J, Zuo C. Microstructure and mechanical properties of multi-components rare earth oxide-doped molybdenum alloys. Mater Sci Eng A, 2006, 483-484: 350
    [10] He B H, Yang H L, Ruan J M. Effect of Y2O3 content on microstructure and properties of molybdenum alloys. Mater Sci Eng Powder Metall, 2012, 17(2): 234 doi: 10.3969/j.issn.1673-0224.2012.02.016

    何斌衡, 杨海林, 阮建明. Y2O3含量对钼合金组织和性能的影响. 粉末冶金材料科学与工程, 2012, 17(2): 234 doi: 10.3969/j.issn.1673-0224.2012.02.016
    [11] Chen D J, Wu H L, Li Z S, et al. Effects of the high content La2O3/Y2O3 on microstructure and mechanical properties of Mo-alloy. Powder Metall Technol, 2016, 34(1): 26 doi: 10.3969/j.issn.1001-3784.2016.01.005

    陈大军, 吴护林, 李忠盛, 等. 高含量La2O3/Y2O3对钼合金微观组织与性能的影响. 粉末冶金技术, 2016, 34(1): 26 doi: 10.3969/j.issn.1001-3784.2016.01.005
    [12] Li N, Xu L J, Dou C H, et al. High temperature mechanical properties of molybdenum alloys doped yttrium oxide. Chin J Rare Met, 2020, 44(6): 578

    李娜, 徐流杰, 窦彩虹, 等. 氧化钇掺杂对钼合金高温力学性能的影响. 稀有金属, 2020, 44(6): 578
    [13] Yang Q L, Feng P F, Zhao H, et al. Occurrence status of Ce element in Mo alloy and its effects on the mechanical properties of Mo alloy. China Molybdenum Ind, 2011, 35(3): 44 doi: 10.3969/j.issn.1006-2602.2011.03.011

    杨秦莉, 冯鹏发, 赵虎, 等. Ce在钼合金中的存在形态及其对力学性能的影响. 中国钼业, 2011, 35(3): 44 doi: 10.3969/j.issn.1006-2602.2011.03.011
    [14] Yang D X, Wang P, Wei S Z, et al. Study on structures and properties of Mo products doped with rare earth. Chin Rare Earths, 2011, 32(6): 62 doi: 10.3969/j.issn.1004-0277.2011.06.013

    杨涤心, 王攀, 魏世忠, 等. 稀土掺杂钼制品的组织和性能研究. 稀土, 2011, 32(6): 62 doi: 10.3969/j.issn.1004-0277.2011.06.013
    [15] Dong D, Wang C Y. Research progress on preparation technology of molybdenum alloy. Powder Metall Technol, 2017, 35(4): 304

    董帝, 王承阳. 钼合金制备工艺的研究进展. 粉末冶金技术, 2017, 35(4): 304
    [16] Feng P F, Yang Q L, Zhao H, et al. Nano Second Phase Particles Doped with Molybdenum Alloy Powder and Preparation Method of Products: China Patent, CN103273071A, 2013-09-04

    冯鹏发, 杨秦莉, 赵虎, 等. 纳米第二相颗粒掺杂钼合金粉末及制品的制备方法: 中国专利, CN103273071A, 2013-09-04
    [17] Feng P F, Yang Q L, Dang X M, et al. Nanosized powder spray doping technology of molybdenum alloys. Chin J Rare Met, 2017, 41(1): 57

    冯鹏发, 杨秦莉, 党晓明, 等. 钼合金纳米喷雾掺杂工艺研究. 稀有金属, 2017, 41(1): 57
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  267
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回