微量Fe元素对氧化钨粉还原过程的影响

陈树群 胡海栋 周文元 胡鹏 李洪义 王金淑

陈树群, 胡海栋, 周文元, 胡鹏, 李洪义, 王金淑. 微量Fe元素对氧化钨粉还原过程的影响[J]. 粉末冶金技术, 2021, 39(3): 209-215. doi: 10.19591/j.cnki.cn11-1974/tf.2021030007
引用本文: 陈树群, 胡海栋, 周文元, 胡鹏, 李洪义, 王金淑. 微量Fe元素对氧化钨粉还原过程的影响[J]. 粉末冶金技术, 2021, 39(3): 209-215. doi: 10.19591/j.cnki.cn11-1974/tf.2021030007
CHEN Shu-qun, HU Hai-dong, ZHOU Wen-yuan, HU Peng, LI Hong-yi, WANG Jing-shu. Effect of trace Fe doping on the hydrogen reduction behaviors of WO3 powders[J]. Powder Metallurgy Technology, 2021, 39(3): 209-215. doi: 10.19591/j.cnki.cn11-1974/tf.2021030007
Citation: CHEN Shu-qun, HU Hai-dong, ZHOU Wen-yuan, HU Peng, LI Hong-yi, WANG Jing-shu. Effect of trace Fe doping on the hydrogen reduction behaviors of WO3 powders[J]. Powder Metallurgy Technology, 2021, 39(3): 209-215. doi: 10.19591/j.cnki.cn11-1974/tf.2021030007

微量Fe元素对氧化钨粉还原过程的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021030007
基金项目: 国家重点研发计划专项资助项目(2017YFB0305600);国家自然科学基金资助项目(51904015);北京市教委科研计划资助项目(KM202010005008)
详细信息
    通讯作者:

    E-mail:wangjsh@bjut.edu.cn

  • 中图分类号: TF123

Effect of trace Fe doping on the hydrogen reduction behaviors of WO3 powders

More Information
  • 摘要: 采用液–固掺杂结合两步氢还原法分别制备未添加和添加质量分数0.1%和1.0%Fe的金属W粉,研究了微量Fe元素对WO3还原过程及产物结构特征的影响。结果表明:WO3前驱体粉体经掺杂和煅烧处理后,在其颗粒表层晶格中形成了含Fe固溶体;在氢气还原过程中,Fe的固溶能够降低WO2.9→WO2和WO2→W的还原温度,促进WO3中裂纹和空隙的产生,细化还原W粉尺寸;还原后Fe元素由偏聚在WO3颗粒表面迁移到W颗粒内部,其分布规律发生了明显转变。
  • 图  1  固–液掺杂法制得的WO3和WO3–Fe粉末X射线衍射图谱

    Figure  1.  XRD patterns of WO3 and Fe-doped WO3 powders by liquid-solid doping

    图  2  WO3和WO3–1.0Fe粉末W 4f(a)和WO3–1.0Fe粉末Fe 2p(b)高分辨X射线光电子能谱

    Figure  2.  W 4f XPS patterns of WO3 and WO3–1.0Fe powders (a) and Fe 2p XPS spectra of WO3–1.0Fe powders (b)

    图  3  WO3–1.0Fe粉末透射电镜表征结果:(a)低倍透射电镜形貌;(b)表层高分辨透射电镜形貌;(c)近表层高分辨透射电镜形貌;(d)高角环形暗场图像及能谱线扫描图谱

    Figure  3.  TEM analysis of WO3–1.0Fe powders: (a) low magnification TEM image; (b) high resolution TEM images at the outer area; (c) high resolution TEM images at the inner area; (d) HADDF image and EDS line scanning spectra

    图  4  WO3粉体的程序升温还原测试图谱

    Figure  4.  H2-TPR spectra of the WO3 and Fe-doped WO3 powders

    图  5  还原W粉X射线衍射图谱

    Figure  5.  XRD patterns of the tungsten powders after hydrogen reduction

    图  7  W–1.0Fe粉体HADDF图像(a)与能谱面扫描图((b)和(c))

    Figure  7.  HADDF image (a) and EDS mapping ((b) and (c)) of W–1.0Fe specimens

  • [1] Jiang X C. Application of ultrafine metal powder injection moulding on tungsten components in fusion devices. Powder Metall Technol, 2018, 36(4): 279

    蒋香草. 超细金属粉末注射成形在聚变装置钨零部件中的应用. 粉末冶金技术, 2018, 36(4): 279
    [2] Xie Y J, Yang H C, Wang X B, et al. Study on the tungsten bulk materials prepared by selective laser melting. Powder Metall Technol, 2018, 36(2): 89

    谢琰军, 杨怀超, 王学兵, 等. 选择性激光熔化制备纯钨块体材料的研究. 粉末冶金技术, 2018, 36(2): 89
    [3] Zhang B H, Niu S Y, Wang L. Preparation and study on microstructure and properties of special tungsten alloy electrode material. Powder Metall Technol, 2017, 35(4): 293

    张保红, 牛山延, 王玲. 特种钨合金电极材料制备工艺及组织性能研究. 粉末冶金技术, 2017, 35(4): 293
    [4] Li B Y, Wu F, Zhang J, et al. Preparation of 90W–7Ni–3Fe heavy alloy sheet by tape-casting. Rare Met Mater Eng, 2019, 48(8): 2616

    李邦怿, 伍方, 张静, 等. 90W–7Ni–3Fe高比重合金薄板材的流延法制备. 稀有金属材料与工程, 2019, 48(8): 2616
    [5] Zhou W P, Wang L, Qin Y N, et al. Preparation technology of large-sized tungsten heavy alloy. Rare Met Mater Eng, 2020, 49(11): 3957

    周武平, 王玲, 秦颖楠, 等. 大规格钨基高比重合金材料制备技术研究. 稀有金属材料与工程, 2020, 49(11): 3957
    [6] Hamidi A G, Arabi H, Khaki J V. Sintering of a nano-crystalline tungsten heavy alloy powder. Int J Refract Met Hard Mater, 2019, 80: 204 doi: 10.1016/j.ijrmhm.2019.01.016
    [7] Ye L, Han Y, Fan J L, et al. Fabrication of ultrafine-grain and great-performance W–Ni–Fe alloy with medium W content. J Alloys Compd, 2020, 846: 156237 doi: 10.1016/j.jallcom.2020.156237
    [8] Deng N, Li J Q, Wang Y, et al. Microstructure and mechanical properties of liquid–phase sintered W@NiFe composite powders. Int J Refract Met Hard Mater, 2021, 95: 105447 doi: 10.1016/j.ijrmhm.2020.105447
    [9] Fan J L, Gong X, Huang B Y, et al. Densification behavior of nanocrystalline W–Ni–Fe composite powders prepared by sol-spray drying and hydrogen reduction process. J Alloys Compd, 2010, 489: 188 doi: 10.1016/j.jallcom.2009.09.050
    [10] Yin Q, Lai C, Chen S Q, et al. Investigations of the nickel promotional effect on the reduction and sintering of tungsten compounds. Int J Refract Met Hard Mater, 2019, 78: 296 doi: 10.1016/j.ijrmhm.2018.10.008
    [11] Song H, Li Y G, Lou Z R, et al. Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl Catal B, 2015, 166-167: 112 doi: 10.1016/j.apcatb.2014.11.020
    [12] Sheng C M, Wang C, Wang H W, et al. Self-photodegradation of formaldehyde under visible-light by solid wood modified via nanostructured Fe-doped WO3 accompanied with superior dimensional stability. J Hazard Mater, 2017, 328: 127 doi: 10.1016/j.jhazmat.2017.01.018
    [13] Huang Y, Cong L Y, Yu J, et al. The surface evolution of a catalyst jointly influenced by thermal spreading and solid-state reaction: A case study with an Fe2O3–MoO3 system. J Mol Catal A Chem, 2009, 302: 48 doi: 10.1016/j.molcata.2008.11.033
    [14] Lai C, Wang J S, Zhou F, et al. Reduction, sintering and mechanical properties of rhenium-tungsten compounds. J Alloys Compd, 2018, 735: 2685 doi: 10.1016/j.jallcom.2017.11.064
    [15] Kim D G, Min K H, Chang S Y, et al. Effect of pre-reduced Cu particles on hydrogen-reduction of W-oxide in WO3–CuO powder mixtures. Mater Sci Eng A, 2005, 399: 326 doi: 10.1016/j.msea.2005.04.010
    [16] Cui Y T. Study on Fabrication, Property and Active Element’ s Behavior of Scandia Doped Dispenser Cathode [Dissertation]. Beijing: Beijing University of Technology, 2012

    崔云涛. 含钪扩散阴极的制备、性能及活性元素行为研究[学位论文]. 北京: 北京工业大学, 2012
  • 加载中
图(7)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  335
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回