大尺寸纯钨板轧制数值模拟

王广达 熊宁 钟铭 刘国辉

王广达, 熊宁, 钟铭, 刘国辉. 大尺寸纯钨板轧制数值模拟[J]. 粉末冶金技术, 2023, 41(4): 315-321. doi: 10.19591/j.cnki.cn11-1974/tf.2021030012
引用本文: 王广达, 熊宁, 钟铭, 刘国辉. 大尺寸纯钨板轧制数值模拟[J]. 粉末冶金技术, 2023, 41(4): 315-321. doi: 10.19591/j.cnki.cn11-1974/tf.2021030012
WANG Guangda, XIONG Ning, ZHONG Ming, LIU Guohui. Numerical simulation of pure tungsten plate rolling in large size[J]. Powder Metallurgy Technology, 2023, 41(4): 315-321. doi: 10.19591/j.cnki.cn11-1974/tf.2021030012
Citation: WANG Guangda, XIONG Ning, ZHONG Ming, LIU Guohui. Numerical simulation of pure tungsten plate rolling in large size[J]. Powder Metallurgy Technology, 2023, 41(4): 315-321. doi: 10.19591/j.cnki.cn11-1974/tf.2021030012

大尺寸纯钨板轧制数值模拟

doi: 10.19591/j.cnki.cn11-1974/tf.2021030012
基金项目: 国家重点研发计划专项资助项目(2017YFB305600)
详细信息
    通讯作者:

    E-mail: wangguangda@atmcn.com

  • 中图分类号: TG142.71

Numerical simulation of pure tungsten plate rolling in large size

More Information
  • 摘要: 钨是核聚变示范堆、散裂中子源及半导体领域中非常重要的一种难熔金属材料,通过对钨板进行轧制变形可以得到各项预期性能。本文通过DEFORM软件模拟大尺寸钨板坯料的轧制,分析轧制方式对损伤因子(损伤值)和应变的影响。结果发现,单向轧制的损伤严重区域主要分布在坯料侧面边缘处,易发生裂纹;交叉轧制对的损伤严重区域比较均匀地分布在坯料四周,由损伤累积产生韧性裂纹的倾向性小。交叉轧制板材在轧制方向的应变曲线在到达一次“最高值”后会下降到上一道次的横向应变,形成“最小值”,两次应变最大值的差值比单向轧制的小。
  • 图  1  单向轧制各道次损伤分布:(a)第1道次;(b)第2道次;(c)第3道次;(d)第4道次;(e)第5道次

    Figure  1.  Damage distribution of each pass in one-way rolling: (a) first pass; (b) second pass; (c) third pass; (d) fourth pass; (e) fifth pass

    图  2  第5道次行程载荷曲线(a)及密度分布(b)

    Figure  2.  Load curve (a) and density distribution (b) of the fifth pass

    图  3  交叉轧制各道次损伤分布:(a)第1道次;(b)第2道次;(c)第3道次;(d)第4道次;(e)第5道次

    Figure  3.  Damage distribution of each pass in cross rolling: (a) first pass; (b) second pass; (c) third pass; (d) fourth pass; (e) fifth pass

    图  4  某点在各道次沿轧制方向塑性应变曲线:(a)第1道次;(b)第2道次;(c)第3道次;(d)第4道次;(e)第5道次

    Figure  4.  Plastic strain curves of one point along the rolling direction at each pass: (a) first pass; (b) second pass; (c) third pass; (d) fourth pass; (e) fifth pass

    图  5  不同轧制方式的损伤分布比较:(a)单向轧制;(b)交叉轧制

    Figure  5.  Damage distribution in different rolling modes: (a) one-way rolling; (b) cross rolling

    图  6  两种不同轧制方式沿轧制方向应变曲线

    Figure  6.  Strain curves along rolling direction for two different rolling modes

    图  7  大尺寸钨板坯宏观形貌

    Figure  7.  Macro appearance of tungsten plates in large size

    表  1  单向轧制各道次变形参数

    Table  1.   Deformation parameters of each pass for one-way rolling

    道次厚度 / mm压下量 / mm变形率 / %
    123.58.526.6
    217.56.025.5
    313.04.525.7
    49.53.526.9
    57.02.525.9
    下载: 导出CSV

    表  2  交叉轧制各道次模拟参数

    Table  2.   Simulation parameters of each pass for the cross rolling

    道次厚度 / mm加热温度 / ℃轧制方向
    123.51600横向
    217.51550换向
    313.01500换向
    49.51450换向
    57.01400换向
    下载: 导出CSV
  • [1] Dubinko A, Terentyev D, Bakaeva A, et al. Evolution of plastic deformation in heavily deformed and recrystallized tungsten of ITER specification studied by TEM. Int J Refract Met Hard Mater, 2017, 66: 105
    [2] Chao Y, Dmitry T, Thomas P, et al. Tensile properties of baseline and advanced tungsten grades for fusion applications. Int J Refract Met Hard Mater, 2018, 75: 153 doi: 10.1016/j.ijrmhm.2018.04.003
    [3] Aldazabala J, García R C, Meizoso M A, et al. A comparison of the structure and mechanical properties of commercially pure tungsten rolled plates for the target of the European spallation source. Int J Refract Met Hard Mater, 2018, 70: 45 doi: 10.1016/j.ijrmhm.2017.09.006
    [4] Krsjak V, Wei S H, Antusch S, et al. Mechanical properties of tungsten in the transition temperature range. J Nucl Mater, 2014, 450: 81 doi: 10.1016/j.jnucmat.2013.11.019
    [5] Kohei T, Takeshi M, Akira H, et al. Recrystallization behavior of hot-rolled pure tungsten and its alloy plates during high-temperature annealing. Nucl Mater Energy, 2018, 15: 158 doi: 10.1016/j.nme.2018.04.004
    [6] Liu W S, Long L P, Ma Y Z. Research and preparation methods for high-purity tungsten. Powder Metall Technol, 2012, 30(3): 223 doi: 10.19591/j.cnki.cn11-1974/tf.2012.03.012

    刘文胜, 龙路平, 马运柱. 高纯钨研究现状及制备工艺方法综述. 粉末冶金技术, 2012, 30(3): 223 doi: 10.19591/j.cnki.cn11-1974/tf.2012.03.012
    [7] Li X C, Yi M Z, Luo C L, et al. Preparation of uniform fine size tungsten powder by boat-less continuous belt reduction furnace. Powder Metall Technol, 2008, 26(3): 163 doi: 10.19591/j.cnki.cn11-1974/tf.2008.03.001

    李新春, 易茂中, 罗崇玲, 等. 带式无舟皿连续还原炉制备粒度均匀的细颗粒钨粉. 粉末冶金技术, 2008, 26(3): 163 doi: 10.19591/j.cnki.cn11-1974/tf.2008.03.001
    [8] Lin G A. Effect of morphology and particle size distribution of tungsten powder on compacting performance and green compact strength. Mater Sci Eng Powder Metall, 2009, 14(4): 260 doi: 10.3969/j.issn.1673-0224.2009.04.010

    林高安. 钨粉形貌与粒度分布对成形性和压坯强度的影响. 粉末冶金材料科学与工程, 2009, 14(4): 260 doi: 10.3969/j.issn.1673-0224.2009.04.010
    [9] Shi J, Liu N, Liu A J, et al. Effect of pressing on microstructure and mechanical property of pure tungsten. Heat Treat, 2015, 30(4): 31

    石俊, 刘宁, 刘爱军, 等. 压制压力对纯钨显微组织和力学性能的影响. 热处理, 2015, 30(4): 31
    [10] Li P, Hua R, Xue K M, et al. Research progress in tungsten and its alloys by plastic processing. Rare Met Mater Eng, 2016, 45(2): 529

    李萍, 华睿, 薛克敏, 等. 钨及其合金塑性加工的研究进展. 稀有金属材料与工程, 2016, 45(2): 529
    [11] Huang P Y. Principle of Powder Metallurgy. Beijing: Metallurgical Industry Press, 2008

    黄培云. 粉末冶金原理. 北京: 冶金工业出版社, 2008
    [12] Shen T L, Dai Y, Lee Y J. Microstructure and tensile properties of tungsten at elevated temperatures. J Nucl Mater, 2016, 468: 348 doi: 10.1016/j.jnucmat.2015.09.057
    [13] Brady G B, James D P, Jonathan P L, et al. Mechanisms of deformation and ductility in tungsten—A review. Int J Refract Met Hard Mater, 2018, 75: 248 doi: 10.1016/j.ijrmhm.2018.04.021
    [14] Chai R, Fang Z Z, Mark K, et al. Methods for improving ductility of tungsten—A review. Int J Refract Met Hard Mater, 2018, 75: 170 doi: 10.1016/j.ijrmhm.2018.04.012
    [15] Zhang X X, Yan Q Z, Yang C T, et al. Recrystallization temperature of tungsten with different deformation degrees. Rare Met, 2016, 35(7): 566 doi: 10.1007/s12598-014-0315-2
    [16] Liu N P, Dan X G, Zhang Y G, et al. Effects of the rolling pass on the microstructure and characteristics of hot rolled tungsten plates. Rare Met Lett, 2008, 27(8): 34

    刘宁平, 淡新国, 张永刚, 等. 轧制工艺对热轧钨板材组织和性能的影响. 稀有金属快报, 2008, 27(8): 34
    [17] Lennon A M, Ramesh K T. The thermoviscoplastic response of polycrystalline tungsten in compression. Mater Sci Eng A, 2000, 276: 9 doi: 10.1016/S0921-5093(99)00517-1
    [18] Wang J, Zhao G Q, Li M J. Establishment of processing map and analysis of microstructure on multi-crystalline tungsten plastic deformation process at elevated temperature. Mater Des, 2016, 103: 268 doi: 10.1016/j.matdes.2016.04.055
    [19] Wang J, Zhao G Q, Chen L A, et al. A comparative study of constitutive models for powder metallurgy tungsten at elevated temperature. Mater Des, 2016, 90: 91 doi: 10.1016/j.matdes.2015.10.114
    [20] Freudenthal A M. The Inelastic Behavior of Engineering Materials and Structures. New York: John Wiley and Sons, 1950
    [21] Oyane M, Sato T, Okimoto K, et al. Criteria for ductile fracture and their applications. J Mech Working Technol, 1980, 4(1): 65 doi: 10.1016/0378-3804(80)90006-6
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  342
  • HTML全文浏览量:  61
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 刊出日期:  2023-08-29

目录

    /

    返回文章
    返回