粉末粒度对纯Re坯显微组织与力学性能的影响

魏子晨 章林 秦明礼 李星宇 阙忠游 曲选辉

魏子晨, 章林, 秦明礼, 李星宇, 阙忠游, 曲选辉. 粉末粒度对纯Re坯显微组织与力学性能的影响[J]. 粉末冶金技术, 2021, 39(3): 196-202. doi: 10.19591/j.cnki.cn11-1974/tf.2021030014
引用本文: 魏子晨, 章林, 秦明礼, 李星宇, 阙忠游, 曲选辉. 粉末粒度对纯Re坯显微组织与力学性能的影响[J]. 粉末冶金技术, 2021, 39(3): 196-202. doi: 10.19591/j.cnki.cn11-1974/tf.2021030014
WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. doi: 10.19591/j.cnki.cn11-1974/tf.2021030014
Citation: WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. doi: 10.19591/j.cnki.cn11-1974/tf.2021030014

粉末粒度对纯Re坯显微组织与力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021030014
基金项目: 国家重点研发计划专项资助项目(2017YFB0305600);国家自然科学基金资助项目(51974029,52074032,52071013);中央高校基本科研业务费专项资金资助项目(FRF-GF-20-27B,FRF-BD-20-23A)
详细信息
    通讯作者:

    E-mail:zhanglincsu@163.com (章林)

    quxh@ustb.edu.cn (曲选辉)

  • 中图分类号: TG146.4

Effect of powder size on microstructure and mechanical properties of rhenium

More Information
  • 摘要: 采用气流分散处理得到两种不同粒度分布的Re粉,利用激光共聚焦显微镜、扫描电子显微镜、维氏硬度计、纳米压痕仪等设备研究粉末粒度和烧结温度对烧结Re坯显微组织及力学性能的影响。结果表明,气流分散处理后的Re粉团聚得到改善,粒度分布范围变窄,平均粒径由21.21 μm降至9.45 μm。随着温度升高,烧结坯的孔隙数量不断减少。粒度分散后的烧结Re坯显微组织更为均匀,在2320 ℃下的平均晶粒尺寸由10.8 μm降至9.9 μm。分散处理后的烧结坯体相对密度提高至98.6%,较未处理的提高了4%,显微硬度提高约12%。分散处理后的烧结坯体有更大的峰值硬度,硬度比未处理的高2~5 GPa。
  • 图  1  分散处理前后Re粉显微形貌:(a)未处理;(b)处理后

    Figure  1.  SEM images of the rhenium powders: (a) untreated; (b) after the dispersion treatment

    图  2  分散处理前后Re粉粒度分布

    Figure  2.  Particle size distribution of the rhenium powders before and after the dispersion treatment

    图  3  Re粉X射线衍射分析图谱

    Figure  3.  X-ray diffraction analysis of the rhenium powders

    图  4  未经处理粉末在不同烧结温度下的Re坯显微组织:(a)2060 ℃;(b)2320 ℃

    Figure  4.  Microstructure of the untreated sintered rhenium billets at the different temperatures: (a) 2060 ℃; (b) 2320 ℃

    图  5  分散处理后粉末在不同烧结温度下的Re坯显微组织:(a)2060 ℃;(b)2320 ℃

    Figure  5.  Microstructure of the sintered rhenium billets after the dispersion treatment at the different temperatures: (a) 2060 ℃; (b) 2320 ℃

    图  6  分散处理前后粉末经2060 ℃烧结的Re坯电子背散射衍射分析和晶粒尺寸分布:(a)未处理Re坯电子背散射衍射分析;(b)分散处理后Re坯电子背散射衍射分析;(c)未处理Re坯晶粒尺寸分布;(d)分散处理后Re坯晶粒尺寸分布

    Figure  6.  EBSD analysis and the particle size distribution of the rhenium billets sintered at 2060 ℃ before and after the dispersion treatment: (a) EBSD analysis of the untreated rhenium billets; (b) EBSD analysis of the rhenium billets after the dispersion treatment; (c) the particle size distribution of the untreated rhenium billets; (d) the particle size distribution of the rhenium billets after the dispersion treatment

    图  7  分散处理前后粉末经2320 ℃烧结的Re坯电子背散射衍射分析和晶粒尺寸分布:(a)未处理Re坯电子背散射衍射分析;(b)分散处理后Re坯电子背散射衍射分析;(c)未处理Re坯晶粒尺寸分布;(d)分散处理后Re坯晶粒尺寸分布

    Figure  7.  EBSD analysis and the particle size distribution of the rhenium billets sintered at 2320 ℃ before and after the dispersion treatment: (a) EBSD analysis of the untreated rhenium billets; (b) EBSD analysis of the rhenium billets after the dispersion treatment; (c) the particle size distribution of the untreated rhenium billets; (d) the particle size distribution of the rhenium billets after the dispersion treatment

    图  8  分散处理前后烧结Re坯的力学性能:(a)相对密度;(b)显微硬度

    Figure  8.  Mechanical properties of the sintered rhenium billets before and after the dispersion treatment: (a) relative density; (b) microhardness

    图  9  分散处理前后烧结Re坯的纳米压痕测试结果:(a)位移–硬度曲线;(b)位移–力曲线

    Figure  9.  Nanoindentation test results of the sintered rhenium billets before and after the dispersion treatment: (a) displacement-hardness curve; (b) displacement-force curve

  • [1] Cheng T Y, Xiong N, Peng K Y, et al. The application and preparation technology of rhenium and rhenium alloys. Rare Met Mater Eng, 2009, 38(2): 373 doi: 10.3321/j.issn:1002-185X.2009.02.042

    程挺宇, 熊宁, 彭楷元, 等. 铼及铼合金的应用现状及制造技术. 稀有金属材料与工程, 2009, 38(2): 373 doi: 10.3321/j.issn:1002-185X.2009.02.042
    [2] Wittenauer J, Liddell K. Advances in the extraction, processing and application of refractory metals. JOM, 1991, 43: 6
    [3] Carlen J C, Bryskin B D. Rhenium-a unique rare metal. Mater Manuf Processes, 1994, 9(6): 1087 doi: 10.1080/10426919408934977
    [4] Wang H Z, Yang S L. Character, application and preparation method of rhenium. J Chin Rare Earth Soc, 2005, 23(Suppl 2): 189

    王海哲, 杨盛良. 铼的特性、应用及其制造技术. 中国稀土学报, 2005, 23(增刊 2): 189
    [5] Bonnekoh C, Hoffmann A, Reiser J. The brittle-to-ductile transition in cold rolled tungsten: On the decrease of the brittle-to-ductile transition by 600 K to − 65 ℃. Int J Refract Met Hard Mater, 2018, 71: 181 doi: 10.1016/j.ijrmhm.2017.11.017
    [6] Wu W P, Jiang P, Hua T S. Research progress of refractory metal rhenium and its alloy. Metall Funct Mater, 2015, 22(2): 48

    吴王平, 江鹏, 华同曙. 难熔金属铼及其合金的研究进展. 金属功能材料, 2015, 22(2): 48
    [7] Wang Y, Wang C Y. Recent advances of rhenium separation and enrichment in China: Industrial processes and laboratory trials. Chin Chem Lett, 2018, 29: 345 doi: 10.1016/j.cclet.2018.01.001
    [8] Bryskin B D, Danek F C. Powder processing and the fabrication of rhenium. JOM, 1991, 43: 24
    [9] Zhang W Z. Progress of research on production and application of rhenium. China Molybdenum Ind, 2008, 32(4): 5 doi: 10.3969/j.issn.1006-2602.2008.04.002

    张文征. 铼的生产与应用研究进展. 中国钼业, 2008, 32(4): 5 doi: 10.3969/j.issn.1006-2602.2008.04.002
    [10] Lin G A. Effect of morphology and particle size distribution of tungsten powder on compacting performance and green compact strength. Mater Sci Eng Powder Metall, 2009, 14(4): 260 doi: 10.3969/j.issn.1673-0224.2009.04.010

    林高安. 钨粉形貌与粒度分布对成形性和压坯强度的影响. 粉末冶金材料科学与工程, 2009, 14(4): 260 doi: 10.3969/j.issn.1673-0224.2009.04.010
    [11] Tan P, Li Z F, Ge Y, et al. Effect of powder sizes on the mechanical properties of porous titanium sheets prepared by rolling and sintering process. Powder Metall Technol, 2020, 38(1): 30

    谈萍, 李增峰, 葛渊, 等. 钛粉粒度对轧制烧结多孔钛板力学性能的影响. 粉末冶金技术, 2020, 38(1): 30
    [12] Wang G D, Xiong N, Liu G H, et al. Effect of powder characteristics on sintering densification of pure rhenium. Chin J Rare Met, 2019, 45(4): 507

    王广达, 熊宁, 刘国辉, 等. 粉末特性对纯铼烧结致密度的影响. 稀有金属, 2019, 45(4): 507
    [13] Zhang K, Feng J N, Huang X L. Effects of Mo-powder grading and ratio on the rolling and punching properties of Mo-plate. China Tungsten Ind, 2015, 30(3): 52 doi: 10.3969/j.issn.1009-0622.2015.03.011

    张焜, 冯娟妮, 黄晓玲. 钼粉分级和配比对烧结钼板坯轧制性能的影响. 中国钨业, 2015, 30(3): 52 doi: 10.3969/j.issn.1009-0622.2015.03.011
    [14] Wang Y H, Liu Q, Bo X W, et al. Research on sintering performance of high purity metal vanadium powder. Powder Metall Technol, 2019, 37(5): 339

    王焱辉, 刘奇, 薄新维, 等. 高纯金属钒粉烧结性能研究. 粉末冶金技术, 2019, 37(5): 339
    [15] Huang H, Qin M L, Qu X H, et al. Study on jet milling processing of tungsten powder. Rare Met Mater Eng, 2012, 41(12): 2210 doi: 10.3969/j.issn.1002-185X.2012.12.030

    黄化, 秦明礼, 曲选辉, 等. 气流磨处理钨粉的研究. 稀有金属材料与工程, 2012, 41(12): 2210 doi: 10.3969/j.issn.1002-185X.2012.12.030
    [16] Zhou L L, Bai M, Liu Z H, et al. The effect of sintering on the properties of ultrafine rhenium powders prepared by CVD method. Rare Met Mater Eng, 2011, 40(10): 1693 doi: 10.1016/S1875-5372(12)60001-0
  • 加载中
图(9)
计量
  • 文章访问数:  573
  • HTML全文浏览量:  172
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回