粉末预处理对钨坩埚应用性能的影响

张宇晴 王芦燕 刘山宇 李曹兵

张宇晴, 王芦燕, 刘山宇, 李曹兵. 粉末预处理对钨坩埚应用性能的影响[J]. 粉末冶金技术, 2021, 39(3): 258-262. doi: 10.19591/j.cnki.cn11-1974/tf.2021030019
引用本文: 张宇晴, 王芦燕, 刘山宇, 李曹兵. 粉末预处理对钨坩埚应用性能的影响[J]. 粉末冶金技术, 2021, 39(3): 258-262. doi: 10.19591/j.cnki.cn11-1974/tf.2021030019
ZHANG Yu-qing, WANG Lu-yan, LIU Shan-yu, LI Cao-bing. Effect of powder pretreatment on the application performance of tungsten crucible[J]. Powder Metallurgy Technology, 2021, 39(3): 258-262. doi: 10.19591/j.cnki.cn11-1974/tf.2021030019
Citation: ZHANG Yu-qing, WANG Lu-yan, LIU Shan-yu, LI Cao-bing. Effect of powder pretreatment on the application performance of tungsten crucible[J]. Powder Metallurgy Technology, 2021, 39(3): 258-262. doi: 10.19591/j.cnki.cn11-1974/tf.2021030019

粉末预处理对钨坩埚应用性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021030019
基金项目: 国家重点研发计划专项资助项目(2017YFB0305600)
详细信息
    通讯作者:

    E-mail:zhangyuqing@bgrimm.com

  • 中图分类号: TF124

Effect of powder pretreatment on the application performance of tungsten crucible

More Information
  • 摘要: 利用不同原料粉末制备钨坩埚样品,并于高温环境下进行应用模拟实验。结果表明,射流分级预处理有助于提升钨坩埚组织均匀性及整体性能;以费氏粒度3.0~3.5 μm的钨粉为原料,经射流分级、压制、烧结等工艺,可制得密度较高(18.770 g·cm−3)、维氏硬度较高(HV0.3 372.15)的钨制品;将该钨坩埚置于高温环境下进行模拟应用验证,其密度及微观形貌较为稳定,变化较小。
  • 图  1  粉体射流分级原理示意图[15]

    Figure  1.  Schematic diagram of the jet grading

    图  2  射流分级前后钨粉显微形貌:(a)分级前;(b)分级后

    Figure  2.  SEM images of the tungsten powders before and after the jet grading: (a) before jet grading; (b) after jet grading

    图  3  不同原料粉末制备的钨制品断口形貌:(a)样品1;(b)样品2;(c)样品3;(d)样品4

    Figure  3.  Fracture morphology of the tungsten products using the different raw powders: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4

    图  4  高温模拟应用前后钨坩埚的显微组织形貌:(a)样品1高温模拟应用前;(b)样品1高温模拟应用后;(c)样品2高温模拟应用前;(d)样品2高温模拟应用后;(e)样品3高温模拟应用前;(f)样品3高温模拟应用后;(g)样品4高温模拟应用前;(h)样品4高温模拟应用后

    Figure  4.  Microstructure of the different tungsten crucibles before and after the high temperature simulation: (a) sample 1 before the high temperature simulation; (b) sample 1 after the high temperature simulation; (c) sample 2 before the high temperature simulation; (d) sample 2 after the high temperature simulation; (e) sample 3 before the high temperature simulation; (f) sample 3 after the high temperature simulation; (g) sample 4 before the high temperature simulation; (h) sample 4 after the high temperature simulation

    表  1  不同粉末制得的钨制品物理性能

    Table  1.   Physical properties of tungsten products using different powders

    原料粉末密度 / (g·cm−3)维氏硬度,HV0.3
    样品118.247309.09
    样品218.145315.92
    样品318.770372.15
    样品418.637347.18
    下载: 导出CSV

    表  2  不同样品高温模拟应用前后密度变化

    Table  2.   Density and dimensions of the different samples before and after the high temperature simulation

    样品编号密度 / (g·cm−3)
    高温模拟应用前高温模拟应用后
    样品118.24718.319
    样品218.14518.262
    样品318.77018.763
    样品418.63718.639
    下载: 导出CSV
  • [1] Zhao M Y, Fan J L, Liu T, et al. Current situation and development trend of China tungsten processing industry. China Tungsten Ind, 2010, 25(2): 26 doi: 10.3969/j.issn.1009-0622.2010.02.007

    赵慕岳, 范景莲, 刘涛, 等. 中国钨加工业的现状与发展趋势. 中国钨业, 2010, 25(2): 26 doi: 10.3969/j.issn.1009-0622.2010.02.007
    [2] Hu S Q, Xiao S T. Research and development of deep processing tungsten products. China Tungsten Ind, 1999, 14(Suppl 1): 207

    胡仕清, 肖松涛. 钨深加工制品的研制与开发. 中国钨业, 1999, 14(增刊 1): 207
    [3] Zhang B H, Niu S T, Wang L. Preparation and study on microstructure and properties of special tungsten alloy electrode material. Powder Metall Technol, 2017, 35(4): 293

    张保红, 牛山廷, 王玲. 特种钨合金电极材料制备工艺及组织性能研究. 粉末冶金技术, 2017, 35(4): 293
    [4] Zhao Z W, Sun F L, Yang J H, et al. Status and prospect of tungsten resources, technologies and industrial development in China. Chin J Nonferrous Met, 2019, 29(9): 1902

    赵中伟, 孙丰龙, 杨金洪, 等. 我国钨资源、技术和产业发展现状与展望. 中国有色金属学报, 2019, 29(9): 1902
    [5] Yu Z Q. Current situation analysis and suggestions of tungsten industry in China. Land Resour Inf, 2020(10): 55 doi: 10.3969/j.issn.1674-3709.2020.10.010

    余泽全. 中国钨行业现状分析及建议. 国土资源情报, 2020(10): 55 doi: 10.3969/j.issn.1674-3709.2020.10.010
    [6] Chen J, Xiong N, Ge Q L, et al. Manufacturing technology of tungsten crucibles. China Tungsten Ind, 2016, 31(1): 63 doi: 10.3969/j.issn.1009-0622.2016.01.012

    陈锦, 熊宁, 葛启录, 等. 钨坩埚的制备技术. 中国钨业, 2016, 31(1): 63 doi: 10.3969/j.issn.1009-0622.2016.01.012
    [7] Lei K. Discussion on the sustainable development model of tungsten products machinery processing industry in China. Sci Technol Innovation Herald, 2015(19): 244 doi: 10.3969/j.issn.1674-098X.2015.19.173

    雷凯. 我国钨制品机械加工业的可持续发展模式探讨. 科技创新导报, 2015(19): 244 doi: 10.3969/j.issn.1674-098X.2015.19.173
    [8] Li L P, Duan X J, Duan H Q, et al. The analysis of cracks at the bottom of tungsten crucible. Rare Met Mater Eng, 2002, 31(Suppl): 64

    李来平, 段小建, 段海清, 等. 钨坩埚底部出现裂纹的原因分析. 稀有金属材料与工程, 2002, 31(增刊): 64
    [9] Chen J H, Li K L, Wang Y F, et al. The effect of hot isostatic pressing on thermal conductivity of additively manufactured pure tungsten. Int J Refract Met Hard Mater, 2020, 87: 105135 doi: 10.1016/j.ijrmhm.2019.105135
    [10] Dong Y H, Zhou X L, Hua X Z. Effect of porosity on thermal performance of Mo–Cu composite. Hot Working Technol, 2008, 37(16): 1 doi: 10.3969/j.issn.1001-3814.2008.16.001

    董应虎, 周贤良, 华小珍. 孔隙率对Mo/Cu复合材料热物理性能的影响. 热加工工艺, 2008, 37(16): 1 doi: 10.3969/j.issn.1001-3814.2008.16.001
    [11] Chen J, Xiong N, Ge Q L, et al. Density uniformity of the tungsten crucible. China Tungsten Ind, 2017, 32(4): 35 doi: 10.3969/j.issn.1009-0622.2017.04.007

    陈锦, 熊宁, 葛启录, 等. 钨坩埚密度均匀性研究. 中国钨业, 2017, 32(4): 35 doi: 10.3969/j.issn.1009-0622.2017.04.007
    [12] Chen Z G, Yan B Y, Feng Z L. Characteristics and technology analysis of tungsten series products produced by chemical vapor deposition. Rare Met Cement Carb, 2013, 41(6): 17

    陈志刚, 颜彬游, 冯振雷. 化学气相沉积法制备钨系列产品特点及工艺分析. 稀有金属与硬质合金, 2013, 41(6): 17
    [13] Min X B, Wang Y M, Xia G M, et al. Preparation and applications of a new heterotypical refractory metal part. Powder Metall Technol, 2010, 28(4): 297

    闵小兵, 王跃明, 夏光明, 等. 一种新型难熔金属异型件的制备技术及其应用. 粉末冶金技术, 2010, 28(4): 297
    [14] Zhang Y Y, Zhou W P, Wang T J, et al. Study on agglomeration and elimination methods of fine tungsten powder. Powder Metall Ind, 2018, 28(5): 11

    张莹莹, 周武平, 王铁军, 等. 细颗粒钨粉团聚和消除方法的研究. 粉末冶金工业, 2018, 28(5): 11
    [15] Wang L Y, Li C B, Zhang Y Q, et al. Application of jet grading technology in tungsten products. Thermal Spray Technol, 2019, 11(3): 70 doi: 10.3969/j.issn.1674-7127.2019.03.011

    王芦燕, 李曹兵, 张宇晴, 等. 射流分级技术在钨制品中的应用. 热喷涂技术, 2019, 11(3): 70 doi: 10.3969/j.issn.1674-7127.2019.03.011
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  65
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回