退火工艺对WTi10靶材组织及纯度的影响

黄志民

黄志民. 退火工艺对WTi10靶材组织及纯度的影响[J]. 粉末冶金技术, 2021, 39(3): 274-279. doi: 10.19591/j.cnki.cn11-1974/tf.2021030025
引用本文: 黄志民. 退火工艺对WTi10靶材组织及纯度的影响[J]. 粉末冶金技术, 2021, 39(3): 274-279. doi: 10.19591/j.cnki.cn11-1974/tf.2021030025
HUANG Zhi-min. Influence of annealing process on microstructure and purity of WTi10 target[J]. Powder Metallurgy Technology, 2021, 39(3): 274-279. doi: 10.19591/j.cnki.cn11-1974/tf.2021030025
Citation: HUANG Zhi-min. Influence of annealing process on microstructure and purity of WTi10 target[J]. Powder Metallurgy Technology, 2021, 39(3): 274-279. doi: 10.19591/j.cnki.cn11-1974/tf.2021030025

退火工艺对WTi10靶材组织及纯度的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021030025
基金项目: 国家重点研发计划专项资助项目(2017YFB0305600)
详细信息
    通讯作者:

    E-mail:huang.zhimin@cxtc.com

  • 中图分类号: TG146.4

Influence of annealing process on microstructure and purity of WTi10 target

More Information
  • 摘要: 在已有WTi10热压靶材制备工艺条件下,通过增加后续退火工艺,改善材料的组织结构,提高材料的纯度。采用基恩士体式显微镜、扫描电子显微镜和辉光放电质谱仪等设备观察和测量材料的显微组织、晶粒尺寸和纯度。结果表明,随着退火温度的升高,富钛β1(W, Ti)相逐渐减少,富钨β(W, Ti)相逐渐增多;当退火温度低于1200 ℃时,材料的主要组织为W相、富钨β(W, Ti)相和富钛β1(W, Ti)相;当退火温度达到1700 ℃时,富钛β1(W, Ti)相基本消失,形成平均晶粒尺寸为7.9 μm的均匀再结晶组织,其O质量分数仅为0.041%,而纯度达到99.995%以上。
  • 图  1  不同退火温度所得WTi10样品的金相组织形貌:(a)未退火;(b)900 ℃;(c)1200 ℃;(d)1500 ℃;(e)1600 ℃;(f)1700 ℃

    Figure  1.  Metallographic morphology of the WTi10 samples annealed at different temperatures: (a) without annealing; (b) 900 ℃; (c) 1200 ℃; (d) 1500 ℃; (e) 1600 ℃; (f) 1700 ℃

    图  2  未退火WTi10样品显微组织形貌

    Figure  2.  SEM image of the unannealed WTi10 samples

    图  3  不同退火温度所得WTi10样品的扫描电子显微形貌:(a)未退火;(b)900 ℃;(c)1200 ℃;(d)1500 ℃;(e)1600 ℃;(f)1700 ℃

    Figure  3.  SEM images of the WTi10 samples annealed at different temperatures: (a) without annealing; (b) 900 ℃; (c) 1200 ℃; (d) 1500 ℃; (e) 1600 ℃; (f) 1700 ℃

    图  4  1700 ℃退火所得样品电子背散射衍射形貌(a)和平均晶粒尺寸(b)

    Figure  4.  EBSD image (a) and the average grain size (b) of the samples annealed at 1700 ℃

    表  1  实验用热压烧结及退火工艺

    Table  1.   Hot pressing sintering and annealing process in the experiment

    试样编号烧结工艺退火工艺
    1#升温500~800 ℃,保温30~120 min;
    升温到900~1100 ℃,保温60~100 min;
    升温到1300~1450 ℃,同时加压到20~50 MPa;
    保温保压30~90 min,随炉冷却。
    2#900 ℃、1 h
    3#1200 ℃、1 h
    4#1500 ℃、1 h
    5#1600 ℃、1 h
    6#1700 ℃、1 h
    下载: 导出CSV

    表  2  图2中区域1、区域2和区域3的能谱分析

    Table  2.   EDS analysis of area 1, area 2 and area 3 in Fig 2

    位置元素原子数分数 / %
    WTi
    197.902.10
    257.3042.70
    384.5715.43
    下载: 导出CSV

    表  3  各工艺条件下试样气体杂质中元素质量分数

    Table  3.   Element mass fraction in the gas impurity of the samples treated by the different process

    试样编号气体杂质中元素质量分数 / %
    CHON
    1#0.00610.004300.07390.0084
    2#0.00640.003600.07030.0089
    3#0.00420.003900.06340.0072
    4#0.00320.001400.05400.0030
    5#0.00260.001200.05100.0020
    6#0.00290.000560.04100.0014
    下载: 导出CSV

    表  4  1700 ℃退火条件下试样杂质中元素质量分数

    Table  4.   Element mass fraction in the impurity of the samples annealed at 1700 ℃

    元素质量分数 / ×10‒6 元素质量分数 / ×10‒6 元素质量分数 / ×10‒6 元素质量分数 / ×10‒6
    Li<0.010 Co0.008 Cd<0.050 Er<0.0010
    Be<0.001 Ni0.220 In<0.050 Tm<0.0010
    B<0.005Cu0.140Sn0.020Yb<0.0050
    F<0.050Zn0.050Sb<0.010Lu<0.0010
    Na0.020Ga<0.010Te<0.005Hf<0.0050
    Mg0.390Ge<0.010I<0.001Ta<1.000
    Al0.090As0.020Cs<0.005W基体
    Si1.100Se<0.010Ba0.070Re<0.0500
    P0.170Br<0.005La<0.001Os<0.0050
    S0.120Rb<0.100Ce<0.001Ir<0.0010
    Cl1.300Sr≤9.200*Pr<0.001Pt<0.0100
    K0.660Y<5.000Nd<0.001Au<0.0500
    Ca0.030Zr<0.100Sm<0.001Hg<0.1000
    Sc<0.010Nb<0.010Eu<0.001Tl<0.010
    Ti基体Mo0.220Gd<0.001Pb0.0300
    V0.002Ru<0.005Tb<0.001Bi<0.001
    Cr0.280Rh<0.010Dy<0.001Th<0.0001
    Mn0.060Pd<0.010Ho<0.001U<0.0001
    Fe1.900Ag<0.010
    注:*可能存在干扰
    下载: 导出CSV
  • [1] Dirks A G, Wolters R A M, Nellissen A J M. On the microstructure property relationship of W–Ti–(N) diffusion barriers. Thin Solid Films, 1990, 194(1): 201
    [2] Ziani A, Kunkel B. Enhanced Sputter Target Manufacturing Method: US Patent, 20070017803A1. 2007-1-25
    [3] Berger S. Elastic and plastic strains in Al/TiW/Si contacts during thermal cycles. Mater Sci Eng A, 2000, 288(2): 164 doi: 10.1016/S0921-5093(00)00863-7
    [4] Hecker M, René H. Advanced Interconnects for ULSI Technology. New Jersey: Wiley Publishing, 2012
    [5] Zhao Q S. Preparation of ulta-pure tungsten powder and tungsten material abroad. Rare Mater Cement Carb, 2003, 31(4): 56
    [6] Sun Y, Xu Y F, Wang J, et al. A Metallization Coating Method for Through Hole of Thin Film Circuit: China Patent, 201710544398.9. 2017-12-1

    孙毅, 许延峰, 王进, 等. 一种薄膜电路通孔金属化镀膜方法: 中国专利, 201710544398.9. 2017-12-1
    [7] Wei Y Y, Wu H, Jiang Z L, et al. Thin Film Circuit and Forming Method of Sputtering Metal Coating: China Patent, 201811640042.6. 2018-12-29

    魏永勇, 吴浩, 蒋昭丽, 等. 一种薄膜电路及其溅射金属涂层的形成方法: 中国专利, 201811640042.6. 2018-12-29
    [8] Yan J. Fundamental Research on the Process and Appliacation of 3D RF Integrated Low-Loss TSV Interposer [Dissertation]. Xiamen: Xiamen University, 2018

    颜俊. 三维射频集成低损耗TSV转接板工艺及应用基础研究[学位论文]. 厦门: 厦门大学, 2018
    [9] Wang Q X, Liang S H, Yang Y, et al. Effect of W powder size on the microstructure and mechanical properties of Ti–20wt%W alloy. Powder Metall Technol, 2010, 28(1): 26

    王庆相, 梁淑华, 杨怡, 等. W粉粒度对Ti–20%W合金组织和力学性能的影响. 粉末冶金技术, 2010, 28(1): 26
    [10] Ma Y T, Liu J B, Huo R L, et al. Research on the preparation and performance of tungsten-aluminum transmission target for micro-computed tomography by magnetron sputtering. Acta Metall Sinica, 2015, 51(11): 1416

    马玉田, 刘俊标, 霍荣岭, 等. 基于磁控溅射法显微CTW–Al透射靶材的制备及其性能研究. 金属学报, 2015, 51(11): 1416
    [11] Wickersham C E. Method of Producing Tungsten-Titanium Sputter Targets and Targets Produced Thereby: US Patent, 05234487. 1993-8-10
    [12] Wickersham C E, Poole J E, Mueller J J. Particle contamination during sputter deposition of W–Ti films. J Vac Sci Technol A, 1992, 10(4): 1713 doi: 10.1116/1.577775
    [13] Lo C F, Mcdonald P, Draper D, et al. Influence of tungsten sputtering target density on physical vapor deposition thin film properties. J Electron Mater, 2005, 34(12): 1468 doi: 10.1007/s11664-005-0152-z
    [14] Kecskes L J, Hall I W. Microstructure effects in hot-explosively-consolidated W–Ti alloys. J Mater Process Technol, 1999, 94: 247 doi: 10.1016/S0924-0136(99)00077-1
    [15] Yang Y H, Wang Q D, Li B Q, et al. High temperature & high pressure preparation and phase characterization of WTi10 alloy. Rare Met Mater Eng, 2021, 50(2): 664

    杨益航, 王启东, 李保强, 等. WTi10合金的高温高压制备及相特征. 稀有金属材料与工程, 2021, 50(2): 664
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  156
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回