3D打印用近球形Nb521合金粉末的流化制备

陈佳男 丁旺旺 朱科研 陈刚 曲选辉

陈佳男, 丁旺旺, 朱科研, 陈刚, 曲选辉. 3D打印用近球形Nb521合金粉末的流化制备[J]. 粉末冶金技术, 2022, 40(2): 126-130. doi: 10.19591/j.cnki.cn11-1974/tf.2021030030
引用本文: 陈佳男, 丁旺旺, 朱科研, 陈刚, 曲选辉. 3D打印用近球形Nb521合金粉末的流化制备[J]. 粉末冶金技术, 2022, 40(2): 126-130. doi: 10.19591/j.cnki.cn11-1974/tf.2021030030
CHEN Jia-nan, DING Wang-wang, ZHU Ke-yan, CHEN Gang, QU Xuan-hui. Fluidizing preparation of near spherical Nb521 alloy powders for 3D printing[J]. Powder Metallurgy Technology, 2022, 40(2): 126-130. doi: 10.19591/j.cnki.cn11-1974/tf.2021030030
Citation: CHEN Jia-nan, DING Wang-wang, ZHU Ke-yan, CHEN Gang, QU Xuan-hui. Fluidizing preparation of near spherical Nb521 alloy powders for 3D printing[J]. Powder Metallurgy Technology, 2022, 40(2): 126-130. doi: 10.19591/j.cnki.cn11-1974/tf.2021030030

3D打印用近球形Nb521合金粉末的流化制备

doi: 10.19591/j.cnki.cn11-1974/tf.2021030030
基金项目: 国家自然科学基金资助项目(51971036);山东省重点研发计划资助项目(2019JZZY010327)
详细信息
    通讯作者:

    E-mail: gche098@ustb.edu.cn

  • 中图分类号: TF122

Fluidizing preparation of near spherical Nb521 alloy powders for 3D printing

More Information
  • 摘要: 采用氢化脱氢(hydrogenation-dehydrogenation,HDH)工艺制备不规则形状Nb521合金粉末,结合流化技术将氢化脱氢粉末进行改性处理,改善粉末球形度及流动性,所制流化Nb521合金粉末基本满足3D打印的工艺要求。通过X射线衍射(X-ray diffraction,XRD)分析、扫描电子显微镜(scanning electron microscope,SEM)观察、粒度分析、化学分析等手段,对粉末形貌、粒度分布、间隙元素含量、球形率以及流动性等特性进行表征。结果表明,经流化处理后,不规则形状的氢化脱氢Nb521合金粉末粒度分布变窄,球形率和流动性均得到显著提高,杂质元素含量得到有效控制,3D打印过程中的铺粉效果良好。
  • 图  1  粉体流化改性工艺示意图

    Figure  1.  Schematic diagram of the powder modification by fluidization

    图  2  600 ℃流化改性处理前后氢化脱氢Nb521合金粉末的显微形貌:(a)流化改性处理前;(b)、(c)、(d)流化改性处理后

    Figure  2.  SEM images of the HDH Nb521 alloys powders before and after fluidizing at 600 ℃: (a) before fluidizing; (b), (c), and (d) after fluidizing

    图  3  流化改性处理前后氢化脱氢Nb521合金粉末X射线衍射图谱

    Figure  3.  XRD patterns of the HDH Nb521 alloys powders before and after fluidizing

    图  4  原料粉末和不同温度流化处理后粉末的粒度分布

    Figure  4.  Particle size distributions of the raw powders and powders after fluidizing at different temperatures

    图  5  粉体流化改性原理示意图

    Figure  5.  Principle schematic diagram of the powder modification by fluidization

    图  6  粉末装填性和铺展性分析:(a)氢化脱氢原料粉末;(b)450 ℃流化处理后粉末

    Figure  6.  Powder packing performance and spreadability: (a) HDH raw powders; (b) powders after fluidizing at 450 ℃

    图  7  氢化脱氢原料粉末(a)和流化粉末(b)在3D打印过程中的铺展性能

    Figure  7.  Powder spreading performance during 3D printing for the HDH raw powders (a) and fluidized powders (b)

    表  1  氢化脱氢原料粉末和不同温度流化处理粉末粒度

    Table  1.   Particle size of the HDH raw powders and the powders after fluidizing at different temperatures

    类别流化温度 / ℃D10 / μmD50 / μmD90 / μm
    氢化脱氢原料粉末9.129.668.1
    流化粉末45014.935.569.2
    50020.940.072.6
    60023.041.973.7
    下载: 导出CSV

    表  2  氢化脱氢原料粉末和流化粉末间隙元素质量分数

    Table  2.   Interstitial element mass fraction of the HDH raw powders and fluidized powders %

    类别OHNC
    氢化脱氢原料粉末0.260.0090.0210.012
    流化粉末0.220.0080.0210.012
    下载: 导出CSV
  • [1] Xia M X, Zheng X, Li Z K, et al. Study on forging process of large sized niobium tungsten alloy bars. Hot Working Technol, 2011, 40(17): 112 doi: 10.3969/j.issn.1001-3814.2011.17.036

    夏明星, 郑欣, 李中奎, 等. 大规格铌钨合金棒材锻造工艺研究. 热加工工艺, 2011, 40(17): 112 doi: 10.3969/j.issn.1001-3814.2011.17.036
    [2] Fu J, Zheng X, Li Z K, et al. Study on high-temperature strengthening of Nb-based alloy. Chin J Rare Met, 2008, 30(5): 548 doi: 10.3969/j.issn.0258-7076.2008.05.002

    付洁, 郑欣, 李中奎, 等. 铌基合金高温强化的研究. 稀有金属, 2008, 30(5): 548 doi: 10.3969/j.issn.0258-7076.2008.05.002
    [3] Mireles O, Rodriguez O, Gao Y P, et al. Additive manufacture of refractory alloy C103 for propulsion applications // AIAA Propulsion and Energy 2020 Forum. Reston, 2020: 1
    [4] Liu B K. Electron Beam Selective Melting of Nb521 Alloy and its Microstructure and Mechanical Properties [Dissertation]. Harbin: Harbin Institute of Technology, 2019

    刘宝鹍. Nb521合金电子束选区熔化及组织结构与力学性能[学位论文]. 哈尔滨: 哈尔滨工业大学, 2019
    [5] Cheng Y. Research on Preparation of Fine Particles Low-Oxygen Niobium Powders by Electron Beam Smelting Niobium with Hydrogenation-Dehydrogenation Processing [Dissertation]. Zhengzhou: Zhengzhou University, 2018

    程阳. 电子束熔炼铌氢化脱氢制备细颗粒低氧铌粉的研究[学位论文]. 郑州: 郑州大学, 2018
    [6] Li M H, Wu Y, Yao X N. Effect of electron-beam melting process on composition and mechanical property of Nb‒W alloy. J Ningxia Univ Nat Sci, 2012, 33(2): 179

    李麦海, 武宇, 姚修楠. 电子束熔炼工艺对Nb‒W合金成分及力学性能的影响. 宁夏大学学报(自然科学版), 2012, 33(2): 179
    [7] Prasad N E, Wanhill R J H. Aerospace Materials and Material Technologies. Singapore: Springer Singapore, 2017
    [8] Terrazas C A, Mireles J, Gaytan S M, et al. Fabrication and characterization of high-purity niobium using electron beam melting additive manufacturing technology. Int J Adv Manuf Technol, 2016, 84(5-8): 1115
    [9] Neikov O D, Naboychenko S S, Yefimov N A. Handbook of Non-Ferrous Metal Powders. 2nd Ed. Oxford: Elsevier, 2019
    [10] Guo Y, Jia L, Kong B, et al. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing. Appl Surf Sci, 2017, 409: 367 doi: 10.1016/j.apsusc.2017.02.221
    [11] Li A, Liu S F, Wang B J, et al. Research progress on preparation of metal powder for 3D printing. J Iron Steel Res, 2018, 30(6): 419

    李安, 刘世锋, 王伯健, 等. 3D打印用金属粉末制备技术研究进展. 钢铁研究学报, 2018, 30(6): 419
    [12] Ding W W, Chen G, Qin M L, et al. Low-cost Ti powders for additive manufacturing treated by fluidized bed. Powder Technol, 2019, 350: 117 doi: 10.1016/j.powtec.2019.03.042
    [13] Qin M L, Chen G, Ding W W, et al. A Preparation Method of Low-Cost Ti Powders for 3D Printing Modified by Fluidization: China Patent, 109382511. 2019-2-26

    秦明礼, 陈刚, 丁旺旺, 等. 一种3D打印用低成本钛粉的流化整形制备方法: 中国专利, 109382511. 2019-2-26
    [14] Sankar M, Baligidad R G, Satyanarayana D V V, et al. Effect of internal oxidation on the microstructure and mechanical properties of C-103 alloy. Mater Sci Eng A, 2013, 574: 104 doi: 10.1016/j.msea.2013.02.057
    [15] Dholea A, Bhattacharyaa A, Gupta R K, et al. The role of the metal-oxide Interface’ s terminating layer on the selective cold cracking of a commercial Niobium−Hafnium−Titanium (C-103) alloy. J Alloys Compd, 2020, 856(9): 157427
    [16] Li X, Zeng K L, He P J, et al. Effect of tightly coupled gas atomization parameters on the properties of metal powders used for 3D printing. Powder Metall Technol, 2021, 39(2): 172

    李响, 曾克里, 何鹏江, 等. 紧耦合气雾化参数对3D打印用金属粉末性能的影响. 粉末冶金技术, 2021, 39(2): 172
    [17] Yang K, Tang H P, Wang J, et al. Preparation and characterization of spherical tantalum powder by radio frequency plasma. Powder Metall Technol, 2020, 38(2): 138

    杨坤, 汤慧萍, 王建, 等. 射频等离子体制备球形钽粉及其性能表征. 粉末冶金技术, 2020, 38(2): 138
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  798
  • HTML全文浏览量:  160
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回