CuSn15含量对无压烧结FeCoCu胎体及金刚石工具组织和性能影响

杜帅 陶洪亮 黄明初 周浩钧 李益民 尹育航 罗丰华

杜帅, 陶洪亮, 黄明初, 周浩钧, 李益民, 尹育航, 罗丰华. CuSn15含量对无压烧结FeCoCu胎体及金刚石工具组织和性能影响[J]. 粉末冶金技术, 2023, 41(6): 481-489. doi: 10.19591/j.cnki.cn11-1974/tf.2021030035
引用本文: 杜帅, 陶洪亮, 黄明初, 周浩钧, 李益民, 尹育航, 罗丰华. CuSn15含量对无压烧结FeCoCu胎体及金刚石工具组织和性能影响[J]. 粉末冶金技术, 2023, 41(6): 481-489. doi: 10.19591/j.cnki.cn11-1974/tf.2021030035
DU Shuai, TAO Hongliang, HUANG Mingchu, ZHOU Haojun, LI Yimin, YIN Yuhang, LUO Fenghua. Effect of CuSn15 content on the structure and properties of pressureless sintered FeCoCu matrix and diamond tools[J]. Powder Metallurgy Technology, 2023, 41(6): 481-489. doi: 10.19591/j.cnki.cn11-1974/tf.2021030035
Citation: DU Shuai, TAO Hongliang, HUANG Mingchu, ZHOU Haojun, LI Yimin, YIN Yuhang, LUO Fenghua. Effect of CuSn15 content on the structure and properties of pressureless sintered FeCoCu matrix and diamond tools[J]. Powder Metallurgy Technology, 2023, 41(6): 481-489. doi: 10.19591/j.cnki.cn11-1974/tf.2021030035

CuSn15含量对无压烧结FeCoCu胎体及金刚石工具组织和性能影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021030035
详细信息
    通讯作者:

    E-mail: fenghualuo@csu.edu.cn

  • 中图分类号: TF124.5

Effect of CuSn15 content on the structure and properties of pressureless sintered FeCoCu matrix and diamond tools

More Information
  • 摘要: 以FeCoCu预合金粉作为金刚石工具的主要胎体材料,以CuSn15预合金粉为添加剂,通过无压烧结制备胎体和金刚石工具材料,研究了CuSn15含量对胎体和金刚石工具材料力学性能、金刚石把持力和显微组织的影响,分析了添加CuSn15后金刚石与胎体金属结合界面,探讨了界面之间化学键合、机械包镶以及胎体与金刚石颗粒支撑力三个方面的变化对金刚石把持力的影响。结果表明:随着CnSn15添加量的增多,FeCoCu胎体材料的相对密度、硬度、抗弯强度呈先增大再降低的趋势。添加质量分数8%CuSn15的FeCoCu胎体性能较好,此时胎体相对密度为97.5%,硬度为HRB 104.6,抗弯强度为1112.6 MPa。采用添加质量分数8%CuSn15的FeCoCu胎体制备金刚石工具时,其强度损失率较低,为21.7%,表明胎体对金刚石工具有较好把持力。
  • 图  1  含有不同质量分数CuSn15的FeCoCu胚体微观组织:(a)0;(b)5%;(c)8%;(d)11%;(e)14%

    Figure  1.  Microstructure of the FeCoCu matrix added by CuSn15 in the different mass fraction: (a) 0; (b) 5%; (c) 8%; (d) 11%; (e) 14%

    图  2  添加不同质量分数CuSn15的FeCoCu胚体合金X射线衍射图谱

    Figure  2.  XRD patterns of the FeCoCu matrix added by CuSn15 in the different mass fraction

    图  3  添加不同质量分数CuSn15的FeCoCu胎体力学性能

    Figure  3.  Mechanical properties of the FeCoCu matrix added by CuSn15 in the different mass fraction

    图  4  添加不同质量分数CuSn15的FeCoCu胎体合金断口形貌:(a)、(b)0;(c)、(d)8%;(e)、(f)14%

    Figure  4.  Fracture morphology of the FeCoCu matrix added by CuSn15 in the different mass fraction: (a), (b) 0; (c), (d) 8%; (e), (f) 14%

    图  5  添加不同质量分数CuSn15的金刚石工具材料断口形貌:(a)、(b)0;(c)、(d)5%;(e)、(f)8%;(g)、(h)11%;(i)、(j)14%

    Figure  5.  Fracture morphology of the diamond tool materials added by CuSn15 in the different mass fraction: (a), (b) 0; (c), (d) 5%; (e), (f) 8%; (g), (h) 11%; (i), (j) 14%

    图  6  添加不同质量分数CuSn15的烧结体金刚石表面能谱分析:(a)0;(b)5%;(c)8%

    Figure  6.  EDS analysis of the sintered diamond surface added by CuSn15 in the different mass fraction: (a) 0; (b) 5%; (c) 8%

    表  1  图1(c)中两种区域的能谱分析

    Table  1.   EDS analysis of two areas in Fig.1(c)

    区域质量分数 / %物相
    FeCoCuSn
    灰白色区26.086.3466.371.21面心立方 Cu
    深灰色区64.7018.7016.280.06体心立方 Fe
    下载: 导出CSV

    表  2  FeCoCu胎体材料的相对密度及线收缩率

    Table  2.   Relative density and linear shrinkage of the FeCoCu matrix materials

    编号胎体成分相对密度 / %线收缩率 / %
    1FeCoCu92.66.32±0.05
    295%FeCoCu+5%CuSn1594.38.32±0.08
    392%FeCoCu+8%CuSn1597.510.13±0.16
    489%FeCoCu+11%CuSn1594.17.56±0.12
    586%FeCoCu+14%CuSn1589.24.43±0.16
    下载: 导出CSV

    表  3  添加不同质量分数CuSn15的胎体烧结体及其形成的金刚石工具材料的抗弯强度

    Table  3.   Bending strength of the sintered matrix and the diamond tool materials added by CuSn15 in the different mass fraction

    编号 胎体成分 抗弯强度 / MPa 强度损失率 / %
    胎体烧结体 金刚石工具材料
    1 FeCoCu 872.3 546.8 37.3
    2 95%FeCoCu+5%CuSn15 942.1 643.8 31.7
    3 92%FeCoCu+8%CuSn15 1112.6 870.7 21.7
    4 89%FeCoCu+11%CuSn15 983.6 692.5 29.6
    5 86%FeCoCu+14%CuSn15 782.9 444.7 43.2
    下载: 导出CSV

    表  4  添加不同质量分数CuSn15金刚石工具材料中金刚石颗粒与胎体之间的间隙宽度

    Table  4.   Gap values between the diamond particles and the matrix in the diamond tool materials added by CuSn15 in the different mass fraction

    编号胎体成分间隙宽度 / μm平均间隙宽度 / μm
    1FeCoCu3.844.134.324.244.13
    295%FeCoCu+5%CuSn151.992.262.311.962.13
    392%FeCoCu+8%CuSn151.110.981.230.871.05
    489%FeCoCu+11%CuSn151.681.641.521.471.58
    586%FeCoCu+14%CuSn154.163.964.323.824.07
    下载: 导出CSV
  • [1] De Oliveira L J, Bobrovnitchii G S, Filgueira M. Processing and characterization of impregnated diamond cutting tools using a ferrous metal matrix. Int J Refract Met Hard Mater, 2007, 25(4): 328 doi: 10.1016/j.ijrmhm.2006.08.006
    [2] Liu Y H, Wang L M, Zhang J H, et al. Preparation and characterization of low sintering temperature ultra-fine cobalt powder. Diamond Abras Eng, 2009(3): 51

    刘宇慧, 汪礼敏, 张景怀, 等. 一种具有较低烧结温度的超细钴粉的制备及表征. 金刚石与磨料磨具工程, 2009(3): 51
    [3] De Paula Barbosa A, Bobrovnitchii G S, Skury A L D, et al. Structure, microstructure and mechanical properties of PM Fe–Cu–Co alloys. Mater Des, 2010, 31(1): 522 doi: 10.1016/j.matdes.2009.07.027
    [4] De Oliveira H C P, Coelho A, Amaral P M, et al. Comparison between cobalt and niobium as a matrix component for diamond impregnated tools used for stone cutting. Key Eng Mater, 2013, 548(4): 98
    [5] Cygan-Bączek E, Wyżga P, Cygan S, et al. Improvement in hardness and wear behaviour of iron-based Mn–Cu–Sn matrix for sintered diamond tools by dispersion strengthening. Materials, 2021, 14(7): 1774 doi: 10.3390/ma14071774
    [6] Wang C, Zhang X F, Wang C F, et al. Currrnt research situation and development of Cu-based diamond tools made by powder metallurge. Powder Metall Technol, 2012, 30(2): 140

    王闯, 张效芬, 王长福, 等. 粉末冶金Cu基金刚石工具的研究现状及进展. 粉末冶金技术, 2012, 30(2): 140
    [7] Xiao C J, Dou Z Q, Li J, et al. Study on the properties of diamond saw blades prepared by Cu-based pre-alloyed powders. Powder Metall Technol, 2018, 36(4): 287

    肖长江, 窦志强, 李娟, 等. 铜基预合金粉末制备金刚石锯片的性能研究. 粉末冶金技术, 2018, 36(4): 287
    [8] Shekhar M, Yadav S K S. Diamond abrasive based cutting tool for processing of advanced engineering materials: a review. Mater Today, 2020, 22(4): 3126
    [9] Yu Q, Ma J, Long W M, et al. Application of silicon brass pre-alloyed powder in diamond tools. Powder Metall Technol, 2020, 38(3): 206

    于奇, 马佳, 龙伟民, 等. 硅黄铜预合金粉末在金刚石工具中的应用. 粉末冶金技术, 2020, 38(3): 206
    [10] Kozyrev E N, Kumykov V K, Kushhabiev A S, et al. Development of diamond–metal compositions for diamond tools. J Surf Invest, 2020, 14(3): 639 doi: 10.1134/S1027451020030076
    [11] Kumar D, Dwarapudi S, Sista K S, et al. Iron powder-based metal matrix for diamond cutting tools: A revie. ISIJ Int, 2020, 14(3): 639
    [12] Xie D L, Wan L, Song D D, et al. Pressureless sintering curve and sintering activation energy of Fe–Co–Cu pre-alloyed powders. Mater Des, 2015, 87(3): 482
    [13] Xie Z G, Liu X Y, Qin H Q, et al. Sintering and mechanical properties of FeCoCu fetal boby applied for diamond tools. J Cent South Univ Sci Technol, 2010, 41(6): 2178

    谢志刚, 刘心宇, 秦海青, 等. 金刚石制品用FeCoCu胎体的烧结与力学性能研究. 中南大学学报(自然科学版), 2010, 41(6): 2178
    [14] Wang C P, Liu X J, Ohnuma I. Phase equilibria in Fe–Cu–X (X: Co, Cr, Si, V) ternary systems. J Phase Equilib, 2002, 23(3): 236 doi: 10.1361/105497102770331712
    [15] Liu X F, Luo J H, Wang X C. Surface quality, microstructure and mechanical properties of Cu–Sn alloy plate prepared by two-phase zone continuous casting. Trans Nonferrous Met Soc China, 2015, 25(6): 1901 doi: 10.1016/S1003-6326(15)63797-9
    [16] Mechnik V A, Bondarenko N A, Kuzin N O, et al. The role of structure formation in forming the physicomechanical properties of composites of the diamond–(Fe–Cu–Ni–Sn) system. J Frict Wear, 2016, 37(4): 377 doi: 10.3103/S1068366616040139
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  2442
  • HTML全文浏览量:  438
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回