增材制造用高温合金粉末制备技术及研究进展

侯维强 孟杰 梁静静 邱克强 任英磊 李金国 王道红 张鹏 张宏伟 汤广全

侯维强, 孟杰, 梁静静, 邱克强, 任英磊, 李金国, 王道红, 张鹏, 张宏伟, 汤广全. 增材制造用高温合金粉末制备技术及研究进展[J]. 粉末冶金技术, 2022, 40(2): 131-138. doi: 10.19591/j.cnki.cn11-1974/tf.2021030038
引用本文: 侯维强, 孟杰, 梁静静, 邱克强, 任英磊, 李金国, 王道红, 张鹏, 张宏伟, 汤广全. 增材制造用高温合金粉末制备技术及研究进展[J]. 粉末冶金技术, 2022, 40(2): 131-138. doi: 10.19591/j.cnki.cn11-1974/tf.2021030038
HOU Wei-qiang, MENG Jie, LIANG Jing-jing, QIU Ke-qiang, REN Ying-lei, LI Jin-guo, WANG Dao-hong, ZHANG Peng, ZHANG Hong-wei, TANG Gang-quan. Preparation technology and research progress of superalloy powders used for additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(2): 131-138. doi: 10.19591/j.cnki.cn11-1974/tf.2021030038
Citation: HOU Wei-qiang, MENG Jie, LIANG Jing-jing, QIU Ke-qiang, REN Ying-lei, LI Jin-guo, WANG Dao-hong, ZHANG Peng, ZHANG Hong-wei, TANG Gang-quan. Preparation technology and research progress of superalloy powders used for additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(2): 131-138. doi: 10.19591/j.cnki.cn11-1974/tf.2021030038

增材制造用高温合金粉末制备技术及研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2021030038
基金项目: 国家重点研发计划资助项目(2018YFB1106000)
详细信息
    通讯作者:

    E-mail: jjliang@imr.ac.cn (梁静静)

    kqqiu@sut.edu.cn (邱克强)

  • 中图分类号: TF123;TG146.1+5

Preparation technology and research progress of superalloy powders used for additive manufacturing

More Information
  • 摘要: 球形粉末是增材制造、粉末冶金、注射成型等制备工艺的重要原料,其成分、粒度、球形度、空心粉率等是影响最终构件性能的关键因素。本文详细介绍了真空感应熔炼气雾化法、电极感应熔炼气雾化法以及等离子旋转电极雾化法等三种可用于增材制造的工程化高温合金球形粉末的制备技术,分析了这三种制粉工艺的特点,阐述了这三种制粉工艺的研发进展,探讨了三种制粉工艺所制备的粉末缺陷形成原因及控制方法,并提出了增材制造用高温合金粉末制备技术的发展趋势。
  • 图  1  真空感应熔炼气体雾化法原理图[8]

    Figure  1.  Schematic of VIGA[8]

    图  2  不同粒径粉末显微形貌[9]:(a)和(c)15~53 μm;(b)和(d)54~180 μm

    Figure  2.  Microstructures of the powders in different particle sizes[9]: (a) and (c) 15~53 μm; (b) and (d) 54~180 μm

    图  3  电极感应熔炼气体雾化法原理图[10]

    Figure  3.  Schematic of EIGA[10]

    图  4  电极感应熔炼气体雾化粉末粒径分布(a)和微观形貌(b)[11]

    Figure  4.  Particle size distributions (a) and microstructure (b) of EIGA powders[11]

    图  5  等离子旋转电极雾化原理图[13]

    Figure  5.  Schematic of PREP[13]

    图  6  等离子旋转电极雾化制备的Inconel718合金粉末微观组织和显微形貌[15]

    Figure  6.  Microstructures of the Inconel718 alloy powders prepared by PREP[15]

    图  7  Inconel718粉末形貌[15]:(a)等离子旋转电极雾化;(b)真空感应熔炼气雾化

    Figure  7.  Powder morphology of Inconel718[15]: (a) PREP; (b) VIGA

    图  8  袋式破碎机制及空心粉形成机理[2930]

    Figure  8.  Bag breakup mode and the hollow particle formation mechanism[2930]

    图  9  粉末中的非金属夹杂物[33]

    Figure  9.  Non-metallic inclusions in powder[33]

  • [1] Liu L, Meng J, Liu J L, et al. Influence of Re on low-cycle fatigue behaviors of single crystal superalloys at intermediate temperature. J Mater Sci Technol, 2019, 35(9): 1917 doi: 10.1016/j.jmst.2019.05.026
    [2] Hou G C, Xie J, Yu J J, et al. Room temperature tensile behaviour of K640S Co-based superalloy. Mater Sci Technol, 2019, 35(5): 530 doi: 10.1080/02670836.2019.1572298
    [3] Tang L, Liang J J, Cui C Y, et al. Influence of Co content on the microstructures and mechanical properties of a Ni-Co base superalloy made by specific additive manufacturing process. Mater Sci Eng A, 2020, 786: 139438 doi: 10.1016/j.msea.2020.139438
    [4] Cox S C, Thornby J A, Gibbons G J, et al. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C, 2015, 47(2): 237
    [5] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater, 2016, 117: 371 doi: 10.1016/j.actamat.2016.07.019
    [6] Panwisawas C, Tang Y T, Reed R C. Metal 3D printing as a disruptive technology for superalloys. Nat Commun, 2020, 11(1): 2327 doi: 10.1038/s41467-020-16188-7
    [7] Lei N Z. Study on Process and Properties of Spherical Metal Powder Prepared by Plasma Rotating Electrode Process [Dissertation]. Xi'an: Xi'an University of Technology, 2019

    雷囡芝. 等离子旋转电极雾化法制备球形金属粉末的工艺及性能研究[学位论文]. 西安: 西安理工大学, 2019
    [8] Wei M W, Chen S Y, Sun M, et al. Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure. Powder Technol, 2020, 367: 724 doi: 10.1016/j.powtec.2020.04.030
    [9] Jia W M, Chen S Y, Wei M W. Characteristics and printability of K417G nickel-base alloy powder prepared by VIGA method. Powder Metall, 2019, 62(1): 30 doi: 10.1080/00325899.2018.1546921
    [10] Yang L B, Ren X N, Xia M, et al. Study on powder characteristics and effect factors of droplets size during electrode induction melting gas atomization. Rare Met Mater Eng, 2020, 49(6): 2017

    杨乐彪, 任晓娜, 夏敏, 等. 电极感应熔化气雾化粉末特性及液滴尺寸影响因素的研究. 稀有金属材料与工程, 2020, 49(6): 2017
    [11] Guo R P, Xu L, Zong B Y P, et al. Characterization of prealloyed Ti‒6Al‒4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts. Acta Metall Sinica, 2017, 30(8): 735 doi: 10.1007/s40195-017-0540-4
    [12] Jin Y, Liu P, Shi J G, et al. Effects of gas-atomized pressure on morphology and properties of TC4 powder prepared by electrode-induced gas atomization. Mater Sci Eng Powder Metall, 2018, 23(3): 312 doi: 10.3969/j.issn.1673-0224.2018.03.012

    金莹, 刘平, 史金光, 等. 雾化压力对电极感应熔炼气体雾化TC4粉末形貌与性能的影响. 粉末冶金材料科学与工程, 2018, 23(3): 312 doi: 10.3969/j.issn.1673-0224.2018.03.012
    [13] Chen G, Zhao S Y, Tan P, et al. A comparative study of Ti‒6Al‒4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol, 2018, 333: 38 doi: 10.1016/j.powtec.2018.04.013
    [14] Liu J, Xu N H, Yu J N. Preparation of TC4 alloy powder by plasma rotating electrode atomization. Ningxia Eng Technol, 2016, 15(4): 340 doi: 10.3969/j.issn.1671-7244.2016.04.011

    刘军, 许宁辉, 于建宁. 用等离子旋转电极雾化法制备TC4合金粉末的研究. 宁夏工程技术, 2016, 15(4): 340 doi: 10.3969/j.issn.1671-7244.2016.04.011
    [15] Wang H, Bai R M, Zhou X M, et al. Comparative analysis of Inconel718 powder prepared by PREP method and AA method. New Technol New Prod China, 2019(19): 1 doi: 10.3969/j.issn.1673-9957.2019.19.002

    王华, 白瑞敏, 周晓明, 等. PREP法和AA法制取Inconel718粉末对比分析. 中国新技术新产品, 2019(19): 1 doi: 10.3969/j.issn.1673-9957.2019.19.002
    [16] He J, Ma S Z, Zhang X G, et al. Research progress and prospects of metal powder preparation technology for additive manufacturing. Mech Eng Mater, 2020, 44(11): 46

    何杰, 马士洲, 张兴高, 等. 增材制造用金属粉末制备技术研究现状及展望. 机械工程材料, 2020, 44(11): 46
    [17] Anderson I E, Terpstra R L. Progress toward gas atomization processing with increased uniformity and control. Mater Sci Eng A, 2002, 326(1): 101 doi: 10.1016/S0921-5093(01)01427-7
    [18] Allimant A, Planche M P, Bailly Y, et al. Progress in gas atomization of liquid metals by means of a De Laval nozzle. Powder Technol, 2009, 190(1-2): 79 doi: 10.1016/j.powtec.2008.04.071
    [19] Strauss J T. Hotter gas increase atomization efficiency. Met Powder Rep, 1999, 54(11): 24 doi: 10.1016/S0026-0657(00)86269-4
    [20] Putimtsev B N. Effect of blast parameters on the mechanism of disintegration of a molten metal jet and on the properties of atomized powders. Powder Metall Met Ceram, 1972, 11(2): 85 doi: 10.1007/BF00814036
    [21] Ozbilen S, Unal A, Sheppard T. Influence of superheat on particle shape and size of gas atomised copper powders. Powder Metall, 1991, 34(1): 53 doi: 10.1179/pom.1991.34.1.53
    [22] Basak C B, Krishnan M, Kumar R, et al. Characterization and process evaluation of Ni–Ti–Fe shape memory alloy macro-spheres directly fabricated via rotating electrode process. J Alloys Compd, 2014, 597(11): 15
    [23] Wosch E, Feldhaus S, Gammal T E. Rapid solidification of steel droplets in plasma rotating electrode process. ISIJ Int, 1995, 35(6): 764 doi: 10.2355/isijinternational.35.764
    [24] Liu S W, Duan W C, Dong B B. Effect of PREP process parameters on properties of AlSi10Mg aluminum alloy powder for 3D printing. Nonferrous Met Eng, 2019, 9(9): 45

    刘少伟, 段望春, 董兵斌. PREP工艺参数对3D打印用AlSi10Mg铝合金粉末性能的影响. 有色金属工程, 2019, 9(9): 45
    [25] Ma L, Jia Q G, Li Y Y, et al. Study on the matching between the diameter of the atomization chamber of the PREP equipment and the cooling crystallization of the powder droplets. China Plant Eng, 2019(17): 173 doi: 10.3969/j.issn.1671-0711.2019.17.095

    马乐, 贾庆功, 李扬扬, 等. PREP设备雾化室直径与粉末熔滴冷却结晶匹配研究. 中国设备工程, 2019(17): 173 doi: 10.3969/j.issn.1671-0711.2019.17.095
    [26] Zhang Y, Dong Y, Zhang Y W, et al. Investigation on abnormal particles in nickel-based superalloy powder by PERP. Powder Metall Ind, 2000, 10(6): 7 doi: 10.3969/j.issn.1006-6543.2000.06.001

    张莹, 董毅, 张义文, 等. 等离子旋转电极法所制取的镍基高温合金粉末中异常颗粒的研究. 粉末冶金工业, 2000, 10(6): 7 doi: 10.3969/j.issn.1006-6543.2000.06.001
    [27] Anderson I E, White E M H, Dehoff R. Feedstock powder processing research needs for additive manufacturing development. Curr Opin Solid State Mater Sci, 2018, 22(1): 8 doi: 10.1016/j.cossms.2018.01.002
    [28] Peng H L. Microstructure and Properties Analysis of Nickel-Based Superalloy Powders Prepared by Gas Atomization [Dissertation]. Guangzhou: South China University of Technology, 2016

    彭翰林. 镍基高温合金粉末组织结构分析及性能研究[学位论文]. 广州: 华南理工大学, 2016
    [29] Li X G, Liu C, Zhu Q. Research progress on gas atomization technology for preparation of feedstock powder used in metal additive manufacturing. Aeronaut Manuf Technol, 2019, 62(22): 22

    黎兴刚, 刘畅, 朱强. 面向金属增材制造的气体雾化制粉技术研究进展. 航空制造技术, 2019, 62(22): 22
    [30] Rabin B H, Smolik G R, Korth G E. Characterization of entrapped gases in rapidly solidified powders. Mater Sci Eng A, 1990, 124(1): 1 doi: 10.1016/0921-5093(90)90328-Z
    [31] Su P F, Liu Z M, Guo Y, et al. Microstructure and solidification defect of René104 nickel-base superalloy powder atomized by argon gas atomization. J Cent South Univ Sci Technol, 2018, 49(1): 64

    苏鹏飞, 刘祖铭, 郭旸, 等. 氩气雾化René104镍基高温合金粉末的显微组织和凝固缺陷. 中南大学学报(自然科学版), 2018, 49(1): 64)
    [32] Hann D B, Cherdantsev A V, Azzopardi B J. Study of bubbles entrapped into a gas-sheared liquid film. Int J Multiphase Flow, 2018, 108: 181 doi: 10.1016/j.ijmultiphaseflow.2018.07.001
    [33] Yuan H, Li Z, Xu W Y, et al. The study of argon atomized superalloy powders. Powder Metall Ind, 2010, 20(4): 1 doi: 10.3969/j.issn.1006-6543.2010.04.001

    袁华, 李周, 许文勇, 等. 氩气雾化制备高温合金粉末的研究. 粉末冶金工业, 2010, 20(4): 1 doi: 10.3969/j.issn.1006-6543.2010.04.001
    [34] Xu W Y, Li Z, Liu Y F, et al. Influence of temperature on the oxidation behaviors of the nickel-based superalloy powders. Powder Metall Technol, 2020, 38(3): 192

    许文勇, 李周, 刘玉峰, 等. 温度对镍基高温合金粉末氧化行为的影响. 粉末冶金技术, 2020, 38(3): 192
    [35] Zou J W, Wang W X. Development and application of P/M superalloy. J Aeronaut Mater, 2006(3): 244 doi: 10.3969/j.issn.1005-5053.2006.03.051

    邹金文, 汪武祥. 粉末高温合金研究进展与应用. 航空材料学报, 2006(3): 244 doi: 10.3969/j.issn.1005-5053.2006.03.051
    [36] Zhang Y W, Li K M. Removing non-metallic inclusion from superalloy powder during electrostatic separation process. Mater Sci Eng Powder Metall, 2016, 21(6): 885 doi: 10.3969/j.issn.1673-0224.2016.06.010

    张义文, 李科敏. 静电分离去除高温合金粉末中非金属夹杂物. 粉末冶金材料科学与工程, 2016, 21(6): 885 doi: 10.3969/j.issn.1673-0224.2016.06.010
  • 加载中
图(9)
计量
  • 文章访问数:  1937
  • HTML全文浏览量:  433
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回