气体雾化法制备TiB2/Al复合材料粉末及其组织演变

江鸿翔 宋岩 赵雷 何杰 赵九洲 张丽丽

江鸿翔, 宋岩, 赵雷, 何杰, 赵九洲, 张丽丽. 气体雾化法制备TiB2/Al复合材料粉末及其组织演变[J]. 粉末冶金技术, 2022, 40(1): 33-39. doi: 10.19591/j.cnki.cn11-1974/tf.2021030039
引用本文: 江鸿翔, 宋岩, 赵雷, 何杰, 赵九洲, 张丽丽. 气体雾化法制备TiB2/Al复合材料粉末及其组织演变[J]. 粉末冶金技术, 2022, 40(1): 33-39. doi: 10.19591/j.cnki.cn11-1974/tf.2021030039
JIANG Hong-xiang, SONG Yan, ZHAO Lei, HE Jie, ZHAO Jiu-zhou, ZHANG Li-li. Preparation and microstructure evolution of TiB2/Al composite powders by gas atomization method[J]. Powder Metallurgy Technology, 2022, 40(1): 33-39. doi: 10.19591/j.cnki.cn11-1974/tf.2021030039
Citation: JIANG Hong-xiang, SONG Yan, ZHAO Lei, HE Jie, ZHAO Jiu-zhou, ZHANG Li-li. Preparation and microstructure evolution of TiB2/Al composite powders by gas atomization method[J]. Powder Metallurgy Technology, 2022, 40(1): 33-39. doi: 10.19591/j.cnki.cn11-1974/tf.2021030039

气体雾化法制备TiB2/Al复合材料粉末及其组织演变

doi: 10.19591/j.cnki.cn11-1974/tf.2021030039
基金项目: 国家自然科学基金项目(U21A2043);中国科学院空间科学战略性先导科技专项资助项目(XDA15013800);辽宁省自然科学基金资助项目(2020-MS-005);辽宁省教育厅基本科研项目(L2017LQN022)
详细信息
    通讯作者:

    E-mail: hxjiang@imr.ac.cn(江鸿翔)

    jzzhao@imr.ac.cn(赵九洲)

  • 中图分类号: TG146.2;TG113.1

Preparation and microstructure evolution of TiB2/Al composite powders by gas atomization method

More Information
  • 摘要: 采用氟盐反应法制备TiB2/Al复合材料铸锭,并以此为原料利用高压气体雾化制粉技术制备TiB2/Al复合材料粉末。利用金相显微镜、扫描电子显微镜、X射线衍射仪、粒度分布仪等手段对所制备铸锭和粉末的组织及性能进行了表征。结果表明:Al熔体中TiB2的溶度积远小于TiAl3和AlB2的溶度积,TiB2自Al熔体中沉淀析出导致的体系Gibbs自由能变化量比TiAl3或AlB2自Al熔体中沉淀析出导致的体系Gibbs自由能变化量的值更小。TiB2/Al复合材料铸锭及粉末均主要由α-Al相和TiB2相组成。气体雾化制备TiB2/Al复合材料粉末中TiB2颗粒具有纳米尺度,且均匀弥散地分布于Al基体之中,不存在明显的偏聚现象。TiB2/Al复合材料粉末的粒度主要分布在10~100 μm之间,呈正态分布,粒径介于10~70 μm粉末占比(质量分数)约为81.1%,粒径大于70 μm粉末收得率为12.6%,粒径小于10 μm粉末收得率为6.3%。
  • 图  1  高压气体雾化制粉原理图

    Figure  1.  Schematic diagram of the powder preparation by high pressure gas atomization

    图  3  TiB2/Al复合材料铸锭的X射线衍射分析

    Figure  3.  XRD patterns of the TiB2/Al composite ingot

    图  4  TiB2/Al复合材料铸锭中TiB2颗粒尺寸分布

    Figure  4.  Size distribution of the TiB2 particles in the TiB2/Al composite ingot

    图  5  高压气体雾化制备TiB2/Al复合材料粉末的形貌(a)及粒度分布(b)

    Figure  5.  Morphology (a) and size distribution (b) of the TiB2/Al composite powders prepared by high pressure gas atomization

    图  6  高压气体雾化制备TiB2/Al复合材料粉末微观组织(a)及X射线衍射分析(b)

    Figure  6.  Microstructure (a) and XRD patterns (b) of the TiB2/Al composite powders prepared by high pressure gas atomization

    图  7  高压气体雾化制备TiB2/Al复合材料粉末中TiB2颗粒的尺寸分布

    Figure  7.  Size distribution of the TiB2 particles in TiB2/Al composite powders prepared by high pressure gas atomization

    图  8  TiB2、TiAl3和AlB2在Al熔体中的溶度积

    Figure  8.  Solubility products of TiB2, TiAl3, and AlB2 phases in the Al melt

    图  9  1023 K(a)和1123 K(b)时TiAl3、TiB2和AlB2自Al熔体沉淀析出时摩尔Gibbs自由能变化量(ΔG)随溶质Ti、B摩尔分数变化

    Figure  9.  Molar Gibbs free energy change (ΔG) for the precipitation of TiAl3, TiB2, and AlB2 phases by the molar fraction of solutes Ti and B in the Al melt at 1023 K (a) and 1123 K (b)

    图  10  直径为50 μm雾化液滴中心处温度和雾化液滴的冷却速度随时间变化

    Figure  10.  Time dependence on the temperature at the center of the atomized droplet and the cooling rate of the atomized droplet with the diameter of 50 μm

  • [1] Chen J, Xiong N, Ge Q L, et al. Research on powder metallurgy process for preparing aluminum matrix boron carbide composites. Powder Metall Technol, 2019, 37(6): 461

    陈锦, 熊宁, 葛启录, 等. 粉末冶金法制备铝基碳化硼复合材料的研究进展. 粉末冶金技术, 2019, 37(6): 461
    [2] Li G R, Xu T, Wang H M, et al. Microstructure study of hot rolling nanosized in-situ Al2O3 particle reinforced A356 matrix composites. J Alloys Compd, 2021, 855: 157107 doi: 10.1016/j.jallcom.2020.157107
    [3] Chen M X, Li X P, Ji G, et al. Novel composite powders with uniform TiB2 nano-particle distribution for 3D printing. Appl Sci, 2017, 7: 250 doi: 10.3390/app7030250
    [4] Tang S S, Shao S Y, Liu H Y, et al. Microstructure and mechanical behaviors of 6061 Al matrix hybrid composites reinforced with SiC and stainless steel particles. Mater Sci Eng A, 2021, 804: 140732 doi: 10.1016/j.msea.2021.140732
    [5] Sun J. The Microstructure Control of in situ TiB2 Particle Reinforced Aluminum Composite [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2015

    孙靖. 原位自生TiB2颗粒增强铝基复合材料组织控制[学位论文]. 上海: 上海交通大学, 2015
    [6] Yi J C, Zhang X W, Rao J H, et al. In-situ chemical reaction mechanism and non-equilibrium microstructural evolution of (TiB2+TiC)/AlSi10Mg composites prepared by SLM-CS processing. J Alloys Compd, 2021, 857: 157553 doi: 10.1016/j.jallcom.2020.157553
    [7] Ma S M, Wang Y Q, Wang X M. Microstructures and mechanical properties of an Al–Cu–Mg–Sc alloy reinforced with in-situ TiB2 particulates. Mater Sci Eng A, 2020, 788: 139603 doi: 10.1016/j.msea.2020.139603
    [8] Hu Z R, Chen F, Xu J L, et al. 3D printing graphene-aluminum nanocomposites. J Alloys Compd, 2018, 746: 269 doi: 10.1016/j.jallcom.2018.02.272
    [9] Geng K, Li S F, Yang Y F, et al. 3D printing of Al matrix composites through in situ impregnation of carbon nanotubes on Al powder. Carbon, 2020, 162: 465 doi: 10.1016/j.carbon.2020.02.087
    [10] Zhou S Y, Su Y, Wang H, et al. Selective laser melting additive manufacturing of 7xxx series Al–Zn–Mg–Cu alloy: Cracking elimination by co-incorporation of Si and TiB2. Addit Manuf, 2020, 36: 101458
    [11] Prathumwan R, Subannajui K. Fabrication of a ceramic/metal (Al2O3/Al) composite by 3D printing as an advanced refractory with enhanced electrical conductivity. RSC Adv, 2020, 10: 32301 doi: 10.1039/D0RA01515F
    [12] Zhao S Y, Wang L Q, Tan P, et al. Preparation and properties of spherical Ti–35.8Al–18.4Nb alloy powders by VIGA-CC method. Powder Metall Technol, 2020, 38(6): 443

    赵少阳, 王利卿, 谈萍, 等. VIGA-CC法制备球形Ti–35.8Al–18.4Nb合金粉末及其性能研究. 粉末冶金技术, 2020, 38(6): 443
    [13] Zhang L L. AlTiB Manufacture, Grain Refinement of Al Alloys and Effect of Kinetic Behaviors of TiB2 Particles [Dissertation]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017

    张丽丽. Al–Ti–B中间合金制备、Al合金细化及TiB2粒子动力学行为的影响[学位论文]. 沈阳: 中国科学院金属研究所, 2017
    [14] Wang Q L. Production of High Boron Al‒B Master Alloys and Investigation on Reaction Mechanism between KBF4 and Molten Aluminum [Dissertation]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012

    王青亮. 高硼含量铝硼中间合金制备及KBF4与铝熔体反应机理研究[学位论文]. 沈阳: 中国科学院金属研究所, 2012
    [15] Shangguan D, Ahuja S, Stefanescu D M. An analytical model for the interaction between an insoluble particle and advancing solid/liquid interface. Metall Trans A, 1992, 23: 669 doi: 10.1007/BF02801184
    [16] Yu H S, Min G H, Zhao S X, et al. Study on particle pushing distance during solidification of particulate reinforced composites. Acta Metall Sinica, 1999, 35(7): 781 doi: 10.3321/j.issn:0412-1961.1999.07.026

    于化顺, 闵光辉, 赵生旭, 等. 复合材料凝固过程中颗粒推移距离及其影响因素. 金属学报, 1999, 35(7): 781 doi: 10.3321/j.issn:0412-1961.1999.07.026
    [17] Greer A L. Overview: Application of heterogeneous nucleation in grain-refining of metals. J Chem Phys, 2016, 145: 211704 doi: 10.1063/1.4968846
    [18] Jia Y W, Wang S C, Shu D. Grain size prediction and investigation of 7055 aluminum alloy inoculated by Al–5Ti–1B master alloy. J Alloys Compd, 2020, 821: 153504 doi: 10.1016/j.jallcom.2019.153504
    [19] Zhao L. Study of the Rapid Solidification of Ternary Immiscible Alloys [Dissertation]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012

    赵雷. 三元难混溶合金的快速凝固过程研究[学位论文]. 沈阳: 中国科学院金属研究所, 2012
  • 加载中
图(10)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  148
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回