激光选区熔化Ti6Al4V合金的工艺参数优化

冯恩昊 王小齐 韩潇 周占伟 康楠 王清正 赵春玲 林鑫

冯恩昊, 王小齐, 韩潇, 周占伟, 康楠, 王清正, 赵春玲, 林鑫. 激光选区熔化Ti6Al4V合金的工艺参数优化[J]. 粉末冶金技术, 2022, 40(6): 555-563. doi: 10.19591/j.cnki.cn11-1974/tf.2021040008
引用本文: 冯恩昊, 王小齐, 韩潇, 周占伟, 康楠, 王清正, 赵春玲, 林鑫. 激光选区熔化Ti6Al4V合金的工艺参数优化[J]. 粉末冶金技术, 2022, 40(6): 555-563. doi: 10.19591/j.cnki.cn11-1974/tf.2021040008
FENG En-hao, WANG Xiao-qi, HAN Xiao, ZHOU Zhan-wei, KANG Nan, WANG Qing-zheng, ZHAO Chun-ling, LIN Xin. Process parameters optimization of Ti6Al4V fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2022, 40(6): 555-563. doi: 10.19591/j.cnki.cn11-1974/tf.2021040008
Citation: FENG En-hao, WANG Xiao-qi, HAN Xiao, ZHOU Zhan-wei, KANG Nan, WANG Qing-zheng, ZHAO Chun-ling, LIN Xin. Process parameters optimization of Ti6Al4V fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2022, 40(6): 555-563. doi: 10.19591/j.cnki.cn11-1974/tf.2021040008

激光选区熔化Ti6Al4V合金的工艺参数优化

doi: 10.19591/j.cnki.cn11-1974/tf.2021040008
基金项目: 中国航发集团产学研合作项目(HFZL2019CXY019)
详细信息
    通讯作者:

    E-mail: hanxiao1998@126.com (韩潇)

    nan.kang@nwpu.edu.cn (康楠)

  • 中图分类号: TG146.2

Process parameters optimization of Ti6Al4V fabricated by selective laser melting

More Information
  • 摘要: 孔洞、未熔粉、裂纹是在激光选区熔化制备试样过程中常见的缺陷,迄今为止,大量研究均集中在减少缺陷上,关于工艺参数对缺陷影响的研究较少。本文系统研究了工艺参数对激光选区熔化Ti6Al4V合金相对密度、表面粗糙度、力学性能的影响。结果表明,低激光功率、高扫描速度和高层厚将会引起不充分的粉末熔化以及球化效应。最佳工艺参数为激光功率200 W,扫描速度500 mm/s,层厚10 μm,扫描间距105 μm。在该参数下,试样的抗拉强度1077 MPa,屈服强度907 MPa。
  • 图  1  激光选区熔化系统以及扫描策略示意图(a),预合金Ti6Al4V粉末形貌(b)和力学拉伸试样尺寸(c)

    Figure  1.  Schematic diagram of SLM system and scanning strategy (a), the morphology of the pre-alloyed Ti6Al4V powders (b), and the size of tensile samples (c)

    图  2  激光功率对试样孔隙率的影响

    Figure  2.  Effect of laser power on the sample porosity

    图  3  不同激光功率下试样表面显微形貌:(a)140 W;(b)160 W;(c)200 W

    Figure  3.  Surface microstructure of the samples under the different laser powers: (a)140 W; (b)160 W; (c)200 W

    图  4  扫描速度对试样孔隙率的影响

    Figure  4.  Effect of scanning speed on the sample porosity

    图  5  不同扫描速度下试样表面显微形貌:(a)500 mm·s‒1;(b)1100 mm·s‒1;(c)1700 mm·s‒1

    Figure  5.  Surface microstructure of the samples under the different scanning speeds: (a) 500 mm·s‒1; (b) 1100 mm·s‒1; (c) 1700 mm·s‒1

    图  6  层厚对试样孔隙率的影响

    Figure  6.  Effect of layer thickness on the sample porosity

    图  7  不同层厚下试样表面显微形貌:(a)0.03 mm;(b)0.05 mm;(c)0.07 mm

    Figure  7.  Surface microstructure of the samples under the different layer thickness: (a) 0.03 mm; (b) 0.05 mm; (c) 0.07 mm

    图  8  激光功率(a)、扫描速度(b)和层厚(c)对试样表面粗糙度的影响

    Figure  8.  Effect of laser power (a), scanning speed (b), and layer thickness (c) on the surface roughness of samples

    图  9  激光功率(a)、扫描速度(b)和层厚(c)对试样显微硬度的影响

    Figure  9.  Effect of laser power (a), scanning speed (b), and layer thickness (c) on the microhardness of samples

    图  10  扫描速度对激光选区熔化Ti6Al4V的抗拉强度和屈服强度影响

    Figure  10.  Effect of scanning speed on the tensile strength and yield strength of SLMed Ti6Al4V samples

    图  11  不同扫描速度下试样室温拉伸断口显微形貌:(a)500 mm·s‒1;(b)800 mm·s‒1;(c)1100 mm·s‒1;(d)1400 mm·s‒1

    Figure  11.  Tensile fracture images of samples at room temperature under the different scanning speeds: (a) 500 mm·s‒1; (b) 800 mm·s‒1; (c) 1100 mm·s‒1; (d) 1400 mm·s‒1

    表  1  Ti6Al4V预合金粉末化学成分(质量分数)

    Table  1.   Nominal chemical composition of the Ti6Al4V alloy powders %

    Al V O H N C Si Fe Ti
    6.28 3.90 0.098 0.002 0.020 0.008 0.026 0.022 Bal.
    下载: 导出CSV

    表  2  优化激光功率实验参数

    Table  2.   Processing parameters for the laser power optimization.

    试样编号 激光功率,
    P / W
    扫描速度,
    v / (mm·s‒1)
    扫描间距,
    h / mm
    层厚,
    t / mm
    A1 140 1100 0.105 0.03
    A2 160
    A3 180
    A4 200
    下载: 导出CSV

    表  3  优化扫描速度实验参数

    Table  3.   Processing parameters for the laser scanning speed optimization.

    试样编号 激光功率,
    P / W
    扫描速度,
    v / (mm·s‒1)
    扫描间距,
    h / mm
    层厚,
    t / mm
    B1 200 500 0.105 0.03
    B2 800
    B3 1100
    B4 1400
    B5 1700
    下载: 导出CSV

    表  4  优化层厚实验参数

    Table  4.   Processing parameters for the layer thickness optimization.

    试样编号 激光功率,
    P / W
    扫描速度,
    v / (mm·s‒1)
    扫描间距,
    h / mm
    层厚,
    t / mm
    C1 200 500 0.105 0.03
    C2 0.04
    C3 0.05
    C4 0.06
    C5 0.07
    下载: 导出CSV
  • [1] Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti‒6A1‒4V. Mater Sci Eng A, 2014, 598: 327 doi: 10.1016/j.msea.2014.01.041
    [2] Zhao Y, He Y H, Jiang Y, et al. Research on preparation of Ti6Al4V alloy using powder metallurgy. Powder Metall Technol, 2009, 27(2): 108

    赵瑶, 贺跃辉, 江垚, 等. 粉末冶金Ti6Al4V合金的研究. 粉末冶金技术, 2009, 27(2): 108
    [3] Sterling A J, Torries B, Shamsaei N, et al. Fatigue behavior and failure mechanisms of direct laser deposited Ti‒6Al‒4V. Mater Sci Eng A, 2016, 655: 100 doi: 10.1016/j.msea.2015.12.026
    [4] Miranda G, Araújo A, Bartolomeu F, et al. Design of Ti6Al4V‒HA composites produced by hot pressing for biomedical applications. Mater Des, 2016, 108: 488 doi: 10.1016/j.matdes.2016.07.023
    [5] Azarniya A, Colera X G, Mirzaali M J, et al. Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties. J Alloys Compd, 2019, 804: 163 doi: 10.1016/j.jallcom.2019.04.255
    [6] Liu Q, Wang Y, Zheng H, et al. Microstructure and mechanical properties of LMD-SLM hybrid forming Ti6Al4V alloy. Mater Sci Eng A, 2016, 660: 24 doi: 10.1016/j.msea.2016.02.069
    [7] Wen Y, Zhang B, Narayan R L, et al. Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718. Addit Manuf, 2021, 40: 101926
    [8] Yu Z, Xu Z, Guo Y, et al. Study on properties of SLM-NiTi shape memory alloy under the same energy density. J Mater Res Technol, 2021, 13: 241 doi: 10.1016/j.jmrt.2021.04.058
    [9] Ponnusamy P, Sharma B, Masood S H, et al. A study of tensile behavior of SLM processed 17-4 PH stainless steel. Mater Today Proc, 2021, 45(6): 4531
    [10] Vastola G, Pei Q X, Zhang Y W. Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy regime. Addit Manuf, 2018, 22: 817
    [11] Gu D D, Shen Y F. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater Des, 2009, 30(8): 2903 doi: 10.1016/j.matdes.2009.01.013
    [12] Murr L E, Quinones S A, Gaytan S M, et al. Microstructure and mechanical behavior of Ti‒6Al‒4V produced by rapid-layer manufacturing for biomedical applications. J Mech Behav Biomed Mater, 2009, 2(1): 20 doi: 10.1016/j.jmbbm.2008.05.004
    [13] Krakhmalev P, Fredriksson G, Yadroitsava I, et al. Deformation behavior and microstructure of Ti‒6Al‒4V manufactured by SLM. Physics Procedia, 2016, 83: 778 doi: 10.1016/j.phpro.2016.08.080
    [14] Yang Y, Li X, Khonsari M M, et al. On enhancing surface wear resistance via rotating grains during selective laser melting. Addit Manuf, 2020, 36: 101583
    [15] Shi X S, Yan C, Feng W W, et al. Effect of high layer thickness on surface quality and defect behavior of Ti‒6Al‒4V fabricated by selective laser melting. Opt Laser Technol, 2020, 132: 106471 doi: 10.1016/j.optlastec.2020.106471
    [16] Gong H J, Rafi K, Gu H F, et al. Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf, 2014, 1-4: 87
    [17] Prashanth K G, Scudino S, Maity T, et al. Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater Res Lett, 2017, 5(6): 386
    [18] Cheng B, Shrestha S, Chou K. Stress and deformation evaluations of scanning strategy effect in selective laser melting. Addit Manuf, 2016, 12: 240
    [19] Ni X Q, Kong D C, Wen Y, et al. Influence factors and improvement methods on the porosity of 3D printing metal materials. Powder Metall Technol, 2019, 37(3): 163

    倪晓晴, 孔德成, 温莹, 等. 3D打印金属材料中孔隙率的影响因素和改善方法. 粉末冶金技术, 2019, 37(3): 163
    [20] Shen Y F, Gu D D, Pan Y F. Balling process in selective laser sintering 316 stainless steel powder. Key Eng Mater, 2006, 315-316: 357 doi: 10.4028/www.scientific.net/KEM.315-316.357
    [21] Deckers J, Meyers S, Kruth J P, et al. Direct selective laser sintering/melting of high density alumina powder layers at elevated temperatures. Physics Procedia, 2014, 56: 117 doi: 10.1016/j.phpro.2014.08.154
    [22] Yadroitsev I, Smurov I. Surface morphology in selective laser melting of metal powders. Physics Procedia, 2011, 12: 264 doi: 10.1016/j.phpro.2011.03.034
    [23] Eberhard A, Michael K. Analysis and optimisation of vertical surface roughness in micro selective laser melting. Surf Topogr Metrol Prop, 2015, 3(3): 034007 doi: 10.1088/2051-672X/3/3/034007
    [24] Spierings A B, Herres N, Levy G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp J, 2011, 17(3): 195 doi: 10.1108/13552541111124770
    [25] Chen Z E, Wu X H, Tomus D, et al. Surface roughness of selective laser melted Ti‒6Al‒4V alloy components. Addit Manuf, 2018, 21: 91
    [26] Kang N, Coniglio N, Cao Y, et al. Intrinsic heat treatment induced graded surficial microstructure and tribological properties of selective laser melted titanium. J Tribol, 2021, 143(5): 1
    [27] Aziz I A, Gabbitas B, Stanford M. Microstructure and tensile strength of rapid manufacturing parts. Adv Mater Res, 2014, 903: 114 doi: 10.4028/www.scientific.net/AMR.903.114
    [28] Shi X Z, Ma S Y, Liu C M, et al. Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti‒6Al‒4V alloy: Microstructure and mechanical properties. Mater Sci Eng A, 2017, 684: 196 doi: 10.1016/j.msea.2016.12.065
    [29] Bhardwaj A, Toshniwal K, Wahed M A, et al. Microstructural and SEM analysis on thin sheets of Ti6Al4V alloy subjected to biaxial and uniaxial tensile tests. Mater Today Proc, 2018, 5(2): 3729 doi: 10.1016/j.matpr.2017.11.625
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  697
  • HTML全文浏览量:  567
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-11
  • 刊出日期:  2022-12-23

目录

    /

    返回文章
    返回