粉末冶金铜铁合金的组织与性能

张陈增 陈存广 李沛 陆天行 杨芳 郭志猛

张陈增, 陈存广, 李沛, 陆天行, 杨芳, 郭志猛. 粉末冶金铜铁合金的组织与性能[J]. 粉末冶金技术, 2022, 40(2): 139-144. doi: 10.19591/j.cnki.cn11-1974/tf.2021040009
引用本文: 张陈增, 陈存广, 李沛, 陆天行, 杨芳, 郭志猛. 粉末冶金铜铁合金的组织与性能[J]. 粉末冶金技术, 2022, 40(2): 139-144. doi: 10.19591/j.cnki.cn11-1974/tf.2021040009
ZHANG Chen-zeng, CHEN Cun-guang, LI Pei, LU Tian-xing, YANG Fang, GUO Zhi-meng. Microstructure and properties of Cu‒Fe alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2022, 40(2): 139-144. doi: 10.19591/j.cnki.cn11-1974/tf.2021040009
Citation: ZHANG Chen-zeng, CHEN Cun-guang, LI Pei, LU Tian-xing, YANG Fang, GUO Zhi-meng. Microstructure and properties of Cu‒Fe alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2022, 40(2): 139-144. doi: 10.19591/j.cnki.cn11-1974/tf.2021040009

粉末冶金铜铁合金的组织与性能

doi: 10.19591/j.cnki.cn11-1974/tf.2021040009
基金项目: 国家自然科学基金资助项目(92066205);中央高校基本科研业务费专项资金资助项目(FRF-GF-19-012AZ)
详细信息
    通讯作者:

    E-mail: cgchen@ustb.edu.cn

  • 中图分类号: TG142.71

Microstructure and properties of Cu‒Fe alloys prepared by powder metallurgy

More Information
  • 摘要: 分别以元素混合粉、机械合金化粉和水气联合雾化合金粉为原料,结合冷等静压成形、烧结及轧制工艺制备了Cu‒5%Fe合金(质量分数),对比了三种原料粉的铜铁合金粉末形貌、微观组织、力学性能及物理性能。结果表明,铁颗粒分布均匀,元素混合、机械合金化和水气联合雾化法粉末烧结体中铁颗粒平均尺寸分别为9.4 μm、1.2 μm、3.5 μm。水气联合雾化法合金样品综合性能最优,抗拉强度550 MPa,导电率59.5% IACS,磁饱和强度9.1 emu·g‒1
  • 图  1  原料粉末显微形貌:(a)电解铜粉;(b)羰基铁粉

    Figure  1.  SEM images of the raw powders: (a) electrolytic copper powders; (b) carbonyl iron powders

    图  2  机械合金化粉末及水气联合雾化粉末显微形貌:(a)、(b)机械合金化合金粉末;(c)、(d)水气联合雾化合金粉

    Figure  2.  SEM images of the mechanically alloyed powders and the water-gas combined atomized powders: (a) and (b) mechanically alloyed powders; (c) and (d) water-gas combined atomized powders

    图  3  Cu‒5%Fe机械合金化粉末截面形貌(a)及能谱分析((b)、(c))

    Figure  3.  Cross-sectional image (a) and energy spectrum ((b) and (c)) of the Cu‒5%Fe powders after mechanical alloying

    图  4  Cu‒5%Fe水气雾化合金粉末截面形貌(a)及能谱分析(b)

    Figure  4.  Cross-sectional image (a) and energy spectrum (b) of the Cu‒5%Fe water vapor atomized alloy powders

    图  5  Cu‒5%Fe合金烧结态光学形貌:(a)元素混合;(b)机械合金化;(c)水气联合雾化

    Figure  5.  OM images of the sintered Cu‒5%Fe alloys: (a) element mixing; (b) mechanical alloying; (c) combined atomization of water and gas

    图  6  Cu‒5%Fe合金冷轧态纵截面显微形貌:(a)元素混合;(b)机械合金化;(c)水气联合雾化

    Figure  6.  Longitudinal section SEM images of the cold-rolled Cu‒5%Fe alloys: (a) element mixing; (b) mechanical alloying; (c) combined atomization of water and gas

    图  7  冷轧态Cu‒5%Fe合金工程应力应变曲线

    Figure  7.  Engineering stress-strain curves of the cold rolled Cu‒5%Fe alloys

    图  8  Cu‒5%Fe合金冷轧态磁滞回线

    Figure  8.  Hysteresis loop of the cold rolled Cu‒5%Fe alloys

    表  1  Cu‒5%Fe合金冷轧态性能参数对比

    Table  1.   Comparison of performance parameters of the cold rolled Cu‒5%Fe alloys

    性能指标烧结态铁相尺寸 /
    μm
    抗拉强度 /
    MPa
    延伸率 /
    %
    弹性模量 /
    GPa
    导电率 /
    % IACS
    磁饱和强度 /
    (emu·g‒1)
    矫顽力 /
    Oe
    元素混合9.4489.20.8125.938.627.456.3
    机械合金化1.2509.63.283.443.214.810.5
    水气联合雾化3.5550.11.8111.259.59.1168.0
    下载: 导出CSV
  • [1] Lu X, Yao D, Chen Y, et al. Microstructure and hardness of Cu‒12%Fe composite at different drawing strains. J Zhejiang Univ Sci, 2014, 15: 149 doi: 10.1631/jzus.A1300164
    [2] Funkenbusch P D, Courtney T H. Microstructural strengthening in cold worked in situ Cu‒14.8 Vol. % Fe composites. Scr Mater, 1981, 15(12): 1349
    [3] Hu H, Li L, Xu L, et al. Research progress on preparation technology of Cu‒Fe alloy. Powder Metall Technol, 2019, 37(6): 468

    胡号, 李雷, 许磊, 等. Cu‒Fe合金制备技术研究进展. 粉末冶金技术, 2019, 37(6): 468
    [4] He T Q, Wang L, Peng C X, et al. Fe‒Cu alloy phase separation process. Mater Eng, 2016, 44(2): 115 doi: 10.11868/j.issn.1001-4381.2016.02.018

    何统求, 王丽, 彭传校, 等. Fe‒Cu合金相分离过程. 材料工程, 2016, 44(2): 115 doi: 10.11868/j.issn.1001-4381.2016.02.018
    [5] Nakagawa Y. Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state. Acta Metall, 1958, 6(11): 704 doi: 10.1016/0001-6160(58)90061-0
    [6] Wang W, Wu Y, Li L. Liquid-liquid phase separation of freely falling undercooled ternary Fe‒Cu‒Sn alloy. Sci Rep, 2015, 5: 16335 doi: 10.1038/srep16335
    [7] Wang M, Zhang R, Xiao Z, et al. Microstructure and properties of Cu‒10wt%Fe alloy produced by double melt mixed casting and multi-stage thermomechanical treatment. J Alloys Compd, 2020, 820: 153323 doi: 10.1016/j.jallcom.2019.153323
    [8] Wang M, Jiang Y, Li Z, et al. Microstructure evolution and deformation behaviour of Cu‒10wt%Fe alloy during cold rolling. Mater Sci Eng A, 2021, 801: 140379 doi: 10.1016/j.msea.2020.140379
    [9] Zou J, Lu D, Fu Q, et al. Microstructure and properties of Cu–Fe deformation processed in-situ composite. Vacuum, 2019, 167: 54 doi: 10.1016/j.vacuum.2019.05.030
    [10] Liu S, Jie J, Guo Z, et al. A comprehensive investigation on microstructure and magnetic properties of immiscible Cu‒Fe alloys with variation of Fe content. Mater Chem Phys, 2019, 238: 121909 doi: 10.1016/j.matchemphys.2019.121909
    [11] Liu S, Jie J, Guo Z, et al. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions. J Alloys Compd, 2018, 742: 99 doi: 10.1016/j.jallcom.2018.01.306
    [12] Liu S, Jie J, Dong B, et al. Novel insight into evolution mechanism of second liquid-liquid phase separation in metastable immiscible Cu‒Fe alloy. Mater Des, 2018, 156: 71 doi: 10.1016/j.matdes.2018.06.044
    [13] Benghalem A, Morris D. Microstructure and strength of wire-drawn Cu‒Ag filamentary composites. Acta Mater, 1997, 45(1): 397 doi: 10.1016/S1359-6454(96)00152-8
    [14] Funkenbusch P, Courtney T. Reply to comments on “on the role of interphase barrier and substructural strengthening in deformation processed composite materials. Scr Metall Mater, 1990, 24: 1175 doi: 10.1016/0956-716X(90)90322-8
    [15] Han K, Vasquez A, Xin Y, et al. Microstructure and tensile properties of nanostructured Cu‒25wt%Ag. Acta Mater, 2003, 51(3): 767 doi: 10.1016/S1359-6454(02)00468-8
    [16] Abbas S F, Park K T, Kim T S, et al. Effect of composition and powder size on magnetic properties of rapidly solidified copper-iron alloys. J Alloys Compd, 2018, 741: 1188 doi: 10.1016/j.jallcom.2018.01.245
    [17] Rowlands G. The variation of coercivity with particle size. J Phys D Appl Phys, 1976, 9: 1267 doi: 10.1088/0022-3727/9/8/013
    [18] Dai X, Xie M, Zhou S, et al. Formation mechanism and improved properties of Cu95Fe5 homogeneous immiscible composite coating by the combination of mechanical alloying and laser cladding. J Alloys Compd, 2018, 740: 194 doi: 10.1016/j.jallcom.2018.01.007
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1862
  • HTML全文浏览量:  554
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回