热处理温度对Mo–14Re合金管材微观组织及力学性能的影响

薛建嵘 林小辉 李延超 梁静 高选乔 张新 张文 李来平

薛建嵘, 林小辉, 李延超, 梁静, 高选乔, 张新, 张文, 李来平. 热处理温度对Mo–14Re合金管材微观组织及力学性能的影响[J]. 粉末冶金技术, 2023, 41(3): 263-267. doi: 10.19591/j.cnki.cn11-1974/tf.2021040011
引用本文: 薛建嵘, 林小辉, 李延超, 梁静, 高选乔, 张新, 张文, 李来平. 热处理温度对Mo–14Re合金管材微观组织及力学性能的影响[J]. 粉末冶金技术, 2023, 41(3): 263-267. doi: 10.19591/j.cnki.cn11-1974/tf.2021040011
XUE Jianrong, LIN Xiaohui, LI Yanchao, LIANG Jing, GAO Xuanqiao, ZHANG Xin, ZHANG Wen, LI Laiping. Effect of heat treatment temperature on microstructure and mechanical properties of Mo–14Re alloy tubes[J]. Powder Metallurgy Technology, 2023, 41(3): 263-267. doi: 10.19591/j.cnki.cn11-1974/tf.2021040011
Citation: XUE Jianrong, LIN Xiaohui, LI Yanchao, LIANG Jing, GAO Xuanqiao, ZHANG Xin, ZHANG Wen, LI Laiping. Effect of heat treatment temperature on microstructure and mechanical properties of Mo–14Re alloy tubes[J]. Powder Metallurgy Technology, 2023, 41(3): 263-267. doi: 10.19591/j.cnki.cn11-1974/tf.2021040011

热处理温度对Mo–14Re合金管材微观组织及力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021040011
基金项目: 陕西省重点研发计划项目(2019ZDLGY05-05);陕西省科技重大专项项目(2020ZDZX04-02-02);陕西省科技重大专项项目(2020ZDZX04-02-01)
详细信息
    通讯作者:

    E-mail: gwenzh@163.com

  • 中图分类号: TG146.4+1

Effect of heat treatment temperature on microstructure and mechanical properties of Mo–14Re alloy tubes

More Information
  • 摘要: 研究了真空退火状态下不同热处理温度对Mo–14Re合金管材显微组织和室温力学性能的影响。结果表明:经轧制加工后的Mo–14Re合金管材晶粒组织沿轧制方向被拉长,呈明显的纤维组织,1100 ℃热处理后晶粒组织局部有宽化现象;随着热处理温度升高,1300 ℃热处理合金管材晶粒组织完成再结晶。热处理条件为1100 ℃、1 h的Mo–14Re合金管材表现出优异的强度与塑性组合,抗拉强度为710 MPa,延伸率为36.5%。断口分析发现,当退火温度在1100 ℃以下,Mo–14Re合金管材出现木纹状撕裂型断裂,表现出明显的塑性变形特征;当热处理温度提高到1300 ℃时,由于发生了再结晶,断口呈准解理断裂,塑性明显下降,变形主要以晶界滑移为主。综合分析表明,Mo–14Re合金轧制管材最佳热处理温度应该控制在1100~1300 ℃之间。
  • 图  1  实验原料粉末:(a)高纯钼粉;(b)高纯铼粉;(c)混合钼铼粉

    Figure  1.  Experimental raw powders: (a) high purity molybdenum powders; (b) high purity rhenium powders; (c) mixed molybdenum-rhenium powders

    图  2  烧结Mo–14Re坯锭显微组织(a)和轧制Mo–14Re管材(b)

    Figure  2.  Microstructure of Mo–14Re billets after sintering (a) and the Mo–14Re pipes after rolling (b)

    图  3  经过不同温度热处理的Mo–14Re管材微观组织:(a)轧制态;(b)900 ℃,1 h;(c)1100 ℃,1 h;(d)1300 ℃,1 h

    Figure  3.  Microstructure of the Mo–14Re tubes after heat treatment at the different temperatures: (a) rolling state; (b) 900 ℃, 1 h; (c) 1100 ℃, 1 h; (d) 1300 ℃, 1 h

    图  4  不同退火温度下Mo–14Re管材强度和延伸率

    Figure  4.  Tensile strength and elongation of the Mo–14Re tubes at the different annealing temperatures

    图  5  不同温度热处理的Mo–14Re管材室温拉伸宏观和断口形貌:(a)轧制态;(b)900 ℃,1 h;(c)1100 ℃,1 h;(d)1300 ℃,1 h

    Figure  5.  Tensile macromorphology and fracture morphology of the Mo–14Re tubes at room temperature under the different heat treatments: (a) rolling state; (b) 900 ℃, 1 h; (c) 1100 ℃, 1 h; (d) 1300 ℃, 1 h

    表  1  Mo–14Re管材轧制前后密度

    Table  1.   Density of the Mo–14Re pipes before and after rolling

    材料状态实测密度 / (g·cm3)相对密度 / %
    烧结坯料10.1392.1
    轧制管材10.9899.7
    下载: 导出CSV

    表  2  Murakamig腐蚀剂成分

    Table  2.   Component of Murakamig etchant

    K3Fe(CN)6KOH(或者NaOH)H2O
    10 g10 g100 mL
    下载: 导出CSV
  • [1] Tan S B, Ye Y C, Ren J W, et al. Effect of alloying elements on low temperature plasticity of molybdenum. Rare Met Mater Eng, 1998, 27(Suppl 1): 145

    谭拴斌, 叶永才, 任吉文, 等. 合金元素对钼低温塑性的影响. 稀有金属材料与工程, 1998, 27(增刊 1): 145
    [2] Liu R Z, An G, Yang Q L, et al. Microstructures and mechanical properties of Mo–Re–La alloy. Powder Metall Technol, 2018, 36(6): 429

    刘仁智, 安耿, 杨秦莉, 等. 钼–铼–镧合金微观组织及力学性能研究. 粉末冶金技术, 2018, 36(6): 429
    [3] Leonhardt T, Carlen J C, Buck M, et al. Investigation of mechanical properties and microstructure of various molybdenum-rhenium alloys. AIP Conf Proc, 1999, 458: 685
    [4] Bryskin B, Carlen J. Rhenium and molybdenum/tungsten based alloys: an overview of database// Proceedings of the 1998 127th Annual Meeting and Exhibition, Elyria, 1998: 11
    [5] Tan Q, Manufacture and application of Mo–Re alloys. China Molybd Ind, 1998, 22(1): 26

    谭强. 钼–铼合金的制造及应用. 中国钼业, 1998, 22(1): 26
    [6] Fabritsiev S A, Gosudarenkova V A, Potapova V A, et al. Effects of neutron irradiation on physical and mechanical properties of Mo–Re alloys. J Nucl Mater, 1992, 191-194: 426
    [7] Busby J T, Leonard K J, Zinkle S J. Radiation-damage in molybdenum-rhenium alloys for space reactor applications. J Nucl Mater, 2007, 366(3): 388 doi: 10.1016/j.jnucmat.2007.03.028
    [8] King J C, El-Genk M S. Submersion-subcritical safe space (S4) reactor. Nucl Eng Des, 2006, 236(17): 1759 doi: 10.1016/j.nucengdes.2005.12.010
    [9] King J C, El-Genk M S. Solid-core, gas-cooled reactor for space and surface power // Space Technology and Applications International Forum-STAIF 2006. Albuquerque, 2006: 298
    [10] El-Genk M S, Tournier J M P. Startup and load-following transients of a thermoelectric space reactor system with no single point failure // 3rd International Energy Conversion Engineering Conference. San Francisco, 2005: 459
    [11] Hatton S A, El-Genk M S. How small can fast-spectrum space reactors get? // Space Technology and Applications International Forum-STAIF 2006. Albuquerque, 2006: 426
    [12] Ashcroft J. Documentation of naval reactors papers and presentations for the space technology and international forum (STAIF) 2006 // Project Prometheus Reactor Module Final Report. Niskayuna, 2006
    [13] Kambe M, Tsunoda H, Mishima K, et al. Rapid-L operator-free fast reactor concept without any control rods. Nucl Technol, 2003, 143(1): 11 doi: 10.13182/NT03-A3394
    [14] Leichtfried G, Schneibel J H, Heilmaier M. Ductility and impact resistance of powder-metallurgical molybdenum-rhenium alloys. Metall Mater Trans A, 2006, 37(10): 2955 doi: 10.1007/s11661-006-0177-9
    [15] Leonard K J, Busby J T, Zinkle S J. Microstructural and mechanical property changes with aging of Mo–41Re and Mo–47.5Re alloys. J Nucl Mater, 2007, 366(3): 369 doi: 10.1016/j.jnucmat.2007.03.027
    [16] Burkhanov G S, Yusupov V S, Roschupkin V V, et al. Manufacturing features, structure, and properties of high-purity Mo–Re thin sheets. J Phys Conf Ser, 2021, 1758(1): 012006 doi: 10.1088/1742-6596/1758/1/012006
    [17] Nemoto Y, Hasegawa A, Satou M, et al. Microstructural development and radiation hardening of neutron irradiated Mo–Re alloys. J Nucl Mater, 2004, 324(1): 62 doi: 10.1016/j.jnucmat.2003.09.007
    [18] Mannheim R L, Garin J L. Structural identification of phases in Mo–Re alloys within the range from 5 to 95%Re. J Mater Process Technol, 2003, 143: 533
    [19] Chen C, Wang M P, Guo M X, et al. Study on annealing behavior of Mo–43wt%Re alloy prepared by powder metallurgy. Trans Mater Heat Treat, 2007, 28(6): 54 doi: 10.3969/j.issn.1009-6264.2007.06.013

    陈畅, 汪明朴, 郭明星, 等. 粉冶金法制备Mo–43wt%Re合金退火行为的研究. 材料热处理学报, 2007, 28(6): 54 doi: 10.3969/j.issn.1009-6264.2007.06.013
    [20] Tan S B, Zhang X M, Ren J W, et al. Structure and properties of molybdenum-rhenium alloys. Chin J Rare Met, 2004, 28(1): 127 doi: 10.3969/j.issn.0258-7076.2004.01.032

    谭栓斌, 张小明, 任吉文, 等. 钼铼合金带材的组织和性能. 稀有金属, 2004, 28(1): 127 doi: 10.3969/j.issn.0258-7076.2004.01.032
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1022
  • HTML全文浏览量:  137
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-05
  • 刊出日期:  2023-06-28

目录

    /

    返回文章
    返回