高强AZ61Mg‒18%Ti复合材料的制备及力学性能

张小红 于欢 胡连喜

张小红, 于欢, 胡连喜. 高强AZ61Mg‒18%Ti复合材料的制备及力学性能[J]. 粉末冶金技术, 2021, 39(6): 532-536. doi: 10.19591/j.cnki.cn11-1974/tf.2021050005
引用本文: 张小红, 于欢, 胡连喜. 高强AZ61Mg‒18%Ti复合材料的制备及力学性能[J]. 粉末冶金技术, 2021, 39(6): 532-536. doi: 10.19591/j.cnki.cn11-1974/tf.2021050005
ZHANG Xiao-hong, YU Huan, HU Lian-xi. Fabrication and mechanical properties of high-strength AZ61Mg‒18%Ti composites[J]. Powder Metallurgy Technology, 2021, 39(6): 532-536. doi: 10.19591/j.cnki.cn11-1974/tf.2021050005
Citation: ZHANG Xiao-hong, YU Huan, HU Lian-xi. Fabrication and mechanical properties of high-strength AZ61Mg‒18%Ti composites[J]. Powder Metallurgy Technology, 2021, 39(6): 532-536. doi: 10.19591/j.cnki.cn11-1974/tf.2021050005

高强AZ61Mg‒18%Ti复合材料的制备及力学性能

doi: 10.19591/j.cnki.cn11-1974/tf.2021050005
基金项目: 国家自然基金资助项目(51374085)
详细信息
    通讯作者:

    E-mail: hulx@hit.edu.cn

  • 中图分类号: TG146.2

Fabrication and mechanical properties of high-strength AZ61Mg‒18%Ti composites

More Information
  • 摘要: 通过机械球磨、真空热压和热挤压制备了AZ61Mg‒18%Ti(质量分数)复合材料,研究了复合材料的微观组织、室温力学性能和强化机制。结果表明,采用真空热压+热挤压制备的复合材料镁基体平均晶粒尺寸为180 nm,Ti颗粒及纳米级Ti3Al相弥散分布于镁基体中,Ti颗粒和Ti3Al相平均尺寸分别为265 nm和10 nm。超细晶AZ61Mg‒18%Ti复合材料具有优异的室温力学性能,其屈服强度、抗压强度和断裂应变分别达到606 MPa、698 MPa和12%。
  • 图  1  复合材料微观组织、尺寸分布及能谱分析:(a)复合粉末扫描电镜显微形貌;(b)复合粉末透射电镜显微形貌;(c)Ti单质粒子扫描电镜显微形貌;(d)Ti颗粒尺寸分布;(e)C点能谱分析;(f)D点能谱分析

    Figure  1.  Microstructure, size distribution, and energy dispersive spectrometer (EDS) analysis of the composites: (a) scanning electron microscope (SEM) image of the composite powders; (b) transmission electron microscope (TEM) image of the composite powders; (c) SEM image of Ti particle; (d) particle size distribution of Ti; (e) EDS analysis of point C; (f) EDS analysis of point D

    图  2  真空热压和热挤压工艺示意图

    Figure  2.  Schematic diagram of the vacuum hot pressing and hot extrusion

    图  3  不同状态AZ61Mg−18%Ti复合材料X射线衍射图谱

    Figure  3.  XRD patterns of the AZ61Mg−18%Ti composites in the various states

    图  4  挤压态AZ61Mg−18%Ti复合材料微观组织(a)和Ti颗粒尺寸分布(b)

    Figure  4.  Microstructure (a) and Ti particle size distribution (b) of the as-extruded AZ61Mg−18%Ti composites

    图  5  AZ61Mg‒18%Ti复合材料透射电镜显微组织形貌:(a)热压态显微形貌;(b)挤压态显微形貌;(c)挤压态高分辨显微形貌;(d)挤压态高分辨放大显微形貌

    Figure  5.  TEM images of the AZ61Mg‒18%Ti composites: (a) the hot pressed; (b) the extruded; (c) the HTEM images as extruded; (d) the amplification HTEM images as extruded

    图  6  商业AZ61镁合金和不同状态AZ61Mg‒18%Ti复合材料室温压缩应力应变曲线

    Figure  6.  Compression strain-stress curves of the commercial AZ61 alloys and the AZ61Mg‒18%Ti composites

  • [1] Wan Y C, Tang B, Gao Y H, et al. Bulk nanocrystalline high-strength magnesium alloys prepared via rotary swaging. Acta Mater, 2020, 200: 274 doi: 10.1016/j.actamat.2020.09.024
    [2] Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature, 2015, 528(7583): 539 doi: 10.1038/nature16445
    [3] Pan H C, Qin G W, Huang Y M, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Acta Mater, 2018, 149: 350 doi: 10.1016/j.actamat.2018.03.002
    [4] Goh C S, Wei J, Lee L C, et al. Properties and deformation behaviour of Mg‒Y2O3 nanocomposites. Acta Mater, 2007, 55(15): 5115 doi: 10.1016/j.actamat.2007.05.032
    [5] Suh B C, Kim J H, Bae J H, et al. Effect of Sn addition on the microstructure and deformation behavior of Mg‒3Al alloy. Acta Mater, 2017, 124: 268 doi: 10.1016/j.actamat.2016.11.020
    [6] Wu Z X, Ahmad R, Yin B, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science, 2018, 359(6374): 447 doi: 10.1126/science.aap8716
    [7] Ren F Y, Xu L, Li C Y, et al. Research progress in the preparation of particle-reinforced magnesium matrix composites by powder metallurgy. Powder Metall Technol, 2020, 38(1): 66

    任峰岩, 许磊, 历长云, 等. 粉末冶金法制备颗粒增强镁基复合材料的研究进展. 粉末冶金技术, 2020, 38(1): 66
    [8] Ding W J. Magnesium Alloy Science and Technology. Beijing: Science Press, 2007

    丁文江. 镁合金科学与技术. 北京: 科学出版社, 2007
    [9] Wang Y, Choo H. Influence of texture on Hall-Petch relationships in an Mg alloy. Acta Mater, 2014, 81: 83 doi: 10.1016/j.actamat.2014.08.023
    [10] Sun W T, Qiao X G, Zheng M Y, et al. Altered ageing behaviour of a nanostructured Mg‒8.2Gd‒3.8Y‒1.0Zn‒0.4Zr alloy processed by high pressure torsion. Acta Mater, 2018, 151: 260
    [11] Yu H H, Li C Z, Xin Y C, et al. The mechanism for the high dependence of the Hall-Petch slope for twinning/slip on texture in Mg alloys. Acta Mater, 2017, 128: 313 doi: 10.1016/j.actamat.2017.02.044
    [12] Wang X. Research on Mechanical Properties of Ultra-Fine Grain AZ31 Magnesium Alloy Prepared by Powder Metallurgy [Dissertation]. Harbin: Harbin Institute of Technology, 2013

    王辛. 粉末冶金超细晶AZ31镁合金材料制备与力学性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2013
    [13] Yu H, Sun Y, Wan Z P, et al. Nanocrystalline Ti/AZ61 magnesium matrix composite: Evolution of microstructure and mechanical property during annealing treatment. J Alloys Compd, 2018, 741: 231 doi: 10.1016/j.jallcom.2018.01.136
    [14] Sun X F, Wang C J, Deng K K, et al. High strength SiCp/AZ91 composite assisted by dynamic precipitated Mg17Al12 phase. J Alloys Compd, 2018, 732: 328 doi: 10.1016/j.jallcom.2017.10.164
    [15] Homma T, Kunito N, Kamado S. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr Mater, 2009, 61(6): 644 doi: 10.1016/j.scriptamat.2009.06.003
  • 加载中
图(6)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  109
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-21
  • 刊出日期:  2021-12-10

目录

    /

    返回文章
    返回