计算机仿真在粉末冶金过程的应用及研究进展

李静

李静. 计算机仿真在粉末冶金过程的应用及研究进展[J]. 粉末冶金技术, 2021, 39(4): 366-372. doi: 10.19591/j.cnki.cn11-1974/tf.2021060001
引用本文: 李静. 计算机仿真在粉末冶金过程的应用及研究进展[J]. 粉末冶金技术, 2021, 39(4): 366-372. doi: 10.19591/j.cnki.cn11-1974/tf.2021060001
LI Jing. Application and research progress of computer simulation used in powder metallurgy process[J]. Powder Metallurgy Technology, 2021, 39(4): 366-372. doi: 10.19591/j.cnki.cn11-1974/tf.2021060001
Citation: LI Jing. Application and research progress of computer simulation used in powder metallurgy process[J]. Powder Metallurgy Technology, 2021, 39(4): 366-372. doi: 10.19591/j.cnki.cn11-1974/tf.2021060001

计算机仿真在粉末冶金过程的应用及研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2021060001
详细信息
    通讯作者:

    E-mail:54045973@qq.com

  • 中图分类号: TF122

Application and research progress of computer simulation used in powder metallurgy process

More Information
  • 摘要: 随着综合性能优秀、形状复杂的粉末冶金零部件的量产化,为了更大程度的降低成本、提高质量、缩短开发周期,计算机仿真技术在粉末冶金领域的应用越来越广泛。本文介绍了目前在粉末冶金领域应用较多的几种仿真软件Abaqus、Deform、Ansys、Comsol、MSC.Marc,列举了几种软件的实际应用,比较了几种仿真软件的优缺点,提出了在实际生产实践中仿真软件的选择标准,并对今后计算机仿真软件在粉末冶金领域的发展提出了建议和展望。
  • 图  1  主雾化熔体液滴分布图[7]

    Figure  1.  Gas-melt interaction in primary atomization[7]

    图  2  二次雾化TAB模型粒度分布图[7]

    Figure  2.  Diameter distribution simulated by TAB model in secondary atomization[7]

    图  3  三维有限元模型(a)和粉末最小网格(b)[8]

    Figure  3.  Three dimensional finite element model (a) and the minimum mesh of powders (b)[8]

    图  4  断层扫描仪获得若干幅多孔材料二维断面图(a)和商业图像处理软件构建的烧结钛的三维多孔结构(b)[10]

    Figure  4.  Cross-sectional images obtained using the computed tomography (a) and the three-dimensional porous structure of the sintered Ti measured by the computed tomography (b)[10]

    图  5  采用立方体单胞模型(a)和基于断层扫描模型(b)的有限元模拟等效应力分布[10]

    Figure  5.  Equivalentstress distribution by finite element modelling based on the unit-cell model (a) and the CT model (b)[10]

    图  6  利用Deform–3D建立的纯钼锻造过程三维模型[11]

    Figure  6.  3D model of the pure molybdenum forging process by Deform–3D[11]

    图  7  三种不同初始坯料连杆最终成形[12]:(a)初始坯料1;(b)初始坯料2;(c)优化后的坯料

    Figure  7.  Final forming of the connecting rods with different initial billets[12]: (a) the initial billet 1; (b) the initial billet 2; (c) the optimized billet

    图  8  平衡器三维仿真模型中相对密度分布[18]:(a)顶部;(b)底部

    Figure  8.  Relative density distributions of the 3D simulation model for balancer[18]: (a) the top; (b) the bottom

  • [1] Huang P Y. Theory of Powder Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004

    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004
    [2] Peng J G, Li D K, Chen D, et al. Comparison the characteristics of the finite element analysis software by the application in iron-based powder metallurgy industry. Powder Metall Technol, 2016, 34(6): 461 doi: 10.3969/j.issn.1001-3784.2016.06.012

    彭景光, 李德凯, 陈迪, 等. 有限元分析在铁基粉末冶金中的应用比较. 粉末冶金技术, 2016, 34(6): 461 doi: 10.3969/j.issn.1001-3784.2016.06.012
    [3] Qu X H. Comments of Editor-in-Chief. Powder Metall Technol, 2021, 39(1): 3

    曲选辉. 主编寄语. 粉末冶金技术, 2021, 39(1): 3
    [4] Jiang Y. Computer Simulation of Powder Metallurgy Process [Dissertation]. Lanzhou: Lanzhou University of Technology, 2019

    蒋煜. 粉末冶金过程的计算机仿真[学位论文]. 兰州: 兰州理工大学, 2019
    [5] Ma C Y. Numerical Simulation of Electromagnetic Field in Vacuum Induction Melting [Dissertation]. Shenyang: Northeastern University, 2013

    马长勇. 真空感应熔炼电磁场的数值模拟[学位论文]. 沈阳: 东北大学, 2013
    [6] Ouyang H W, Wang Q, Liu Z M. Numerical study on abrupt change of flow field in close-coupled gas atomization. Mater Sci Eng Powder Metall, 2010, 15(2): 96 doi: 10.3969/j.issn.1673-0224.2010.02.002

    欧阳鸿武, 王琼, 刘卓民. 紧耦合气雾化流场结构突变过程的数值模拟. 粉末冶金材料科学与工程, 2010, 15(2): 96 doi: 10.3969/j.issn.1673-0224.2010.02.002
    [7] Xia M, Wang P, Zhang X H, et al. Computational fluid dynamic investigation of the primary and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process. Acta Phys Sin, 2018, 67(17): 41

    夏敏, 汪鹏, 张晓虎, 等. 电极感应熔化气雾化制粉技术中非限制式喷嘴雾化过程模拟. 物理学报, 2018, 67(17): 41
    [8] Zhou R, Zhang L H, He B Y, et al. Numerical simulation of residual stress field in green power metallurgy compacts by modified Drucker-Prager Cap model. Trans Nonferrous Met Soc China, 2013, 23(8): 2374 doi: 10.1016/S1003-6326(13)62744-2
    [9] Deng Z H, Yin H Q, Li W Q, et al. Design of Cu-based powder alloys used for low speed and heavy bearing with inverse design methodology. Powder Metall Technol, 2020, 38(2): 83

    邓正华, 尹海清, 李万全, 等. 基于逆向设计思想的低速重载轴承用铜基粉末合金的设计. 粉末冶金技术, 2020, 38(2): 83
    [10] Lee D J, Jung J M, Latypov M I, et al. Three-dimensional real structure-based finite element analysis of mechanical behavior for porous titanium manufactured by a space holder method. Comput Mater Sci, 2015, 100: 2 doi: 10.1016/j.commatsci.2014.10.020
    [11] Yang D L, Duan B H, Wang D Z. Numerical simulation and experimental investigation on multi-directional forging of pure molybdenum. Powder Metall Technol, 2021, 39(3): 216

    杨栋林, 段柏华, 王德志. 纯钼的多向锻造数值模拟及实验研究. 粉末冶金技术, 2021, 39(3): 216
    [12] Yang Z W, Guo S S, Sun K L. An application for forging of connecting rod based on DEFORM–3D. Mod Manuf Eng, 2010, 4(8): 93 doi: 10.3969/j.issn.1671-3133.2010.08.024

    杨兆伟, 郭顺生, 孙康岭. DEFORM–3D仿真软件在连杆锻造过程中的应用. 现代制造工程, 2010, 4(8): 93 doi: 10.3969/j.issn.1671-3133.2010.08.024
    [13] You M M, Pan S Y, Shen X P, et al. Current progress and prospect of numerical simulation in powder compaction. Powder Metall Ind, 2017, 27(4): 49

    尤萌萌, 潘诗琰, 申小平, 等. 粉末压制过程数值模拟的研究现状及展望. 粉末冶金工业, 2017, 27(4): 49
    [14] Mao H J, Shen X Y. Numerical simulation of powder metallurgy components strengthened by surface rolling. Hot Working Technol, 2020, 39(11): 110

    毛华杰, 沈小燕. 粉末冶金件表面滚压塑性变形强化过程的数值模拟. 热加工工艺, 2020, 39(11): 110
    [15] Zhang J. Study on the Compact Density and Sintering Deformation of Carbide Inserts [Dissertation]. Changsha: Central South University, 2014

    张京. 硬质合金刀片压坯密度分布与烧结变形的研究[学位论文]. 长沙: 中南大学, 2014
    [16] Lang L H, Wang G, Bu G L, et al. Study of numerical simulation and mechanical properties of hot isostatic pressed titanium alloy powder. Powder Metall Ind, 2015, 25(3): 1

    郎利辉, 王刚, 布国亮, 等. 钛合金粉末热等静压数值模拟及性能研究. 粉末冶金工业, 2015, 25(3): 1
    [17] Yu S, Lang L H, Wang G, et al. Research on numerical simulation of 2A12 aluminum alloy manufactured by hot isostatic pressing. Powder Metall Ind, 2016, 26(2): 17

    喻思, 郎利辉, 王刚, 等. 热等静压成形2A12铝合金粉末的数值模拟研究. 粉末冶金工业, 2016, 26(2): 17
    [18] Song Y, Li Y Y, Zhou Z Y, et al. Improved model and 3D simulation of densification process for iron powder. Trans Nonferrous Met Soc China, 2010, 20(8): 1470 doi: 10.1016/S1003-6326(09)60323-X
    [19] Tan S L, Zhang X M, Zhao Z P, et al. System simulation of multi-physical field coupling in electric current-assisted sintering. Powder Metall Technol, 2020, 38(6): 414

    谭树林, 张晓敏, 赵志鹏, 等. 电流辅助烧结过程的多物理场耦合体系模拟. 粉末冶金技术, 2020, 38(6): 414
    [20] Wang D, Yang Y. Functional characteristics of large-scalediscrete element software EDEM. Perspect Sci Technol Achiev, 2009, 4(3): 75 doi: 10.3969/j.issn.1005-5096.2009.03.034

    王东, 杨溢. 大型离散元软件EDEM的功能特点. 科技成果纵横, 2009, 4(3): 75 doi: 10.3969/j.issn.1005-5096.2009.03.034
    [21] Zhang H, Zhang Y Z. Brief introduction of particle mechanics simulation software EDEM. CAD/CAM Manuf Inform, 2008, 4(12): 48

    张辉, 张永震. 颗粒力学仿真软件EDEM简要介绍. CAD/CAM与制造业信息化, 2008, 4(12): 48
    [22] Zhao Y B, Ma L, Liu Bo, et al. Analysis on vibration packing density of pure iron powders based on discrete element method. Powder Metall Technol, 2020, 38(6): 429

    赵艳波, 马麟, 刘波, 等. 基于离散元法的纯铁粉振动填充密度分析. 粉末冶金技术, 2020, 38(6): 429
    [23] Liu Y L, Zeng Y. Mechanical behavior analysis on the compression molding process of NdFeB by different molding technology. Powder Metall Technol, 2020, 38(4): 262

    刘义伦, 曾洋. 不同成型工艺下钕铁硼模压成型过程的力学行为分析. 粉末冶金技术, 2020, 38(4): 262
  • 加载中
图(8)
计量
  • 文章访问数:  732
  • HTML全文浏览量:  845
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回