粉末冶金法制备核燃料包壳FeCrAl合金研究进展

贾文清 刘向兵 徐超亮 李远飞 钱王洁 全琪炜 尹建

贾文清, 刘向兵, 徐超亮, 李远飞, 钱王洁, 全琪炜, 尹建. 粉末冶金法制备核燃料包壳FeCrAl合金研究进展[J]. 粉末冶金技术, 2022, 40(1): 22-32. doi: 10.19591/j.cnki.cn11-1974/tf.2021060010
引用本文: 贾文清, 刘向兵, 徐超亮, 李远飞, 钱王洁, 全琪炜, 尹建. 粉末冶金法制备核燃料包壳FeCrAl合金研究进展[J]. 粉末冶金技术, 2022, 40(1): 22-32. doi: 10.19591/j.cnki.cn11-1974/tf.2021060010
JIA Wen-qing, LIU Xiang-bing, XU Chao-liang, LI Yuan-fei, QIAN Wang-jie, QUAN Qi-wei, YIN Jian. Research progress on FeCrAl alloys used for nuclear fuel cladding prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2022, 40(1): 22-32. doi: 10.19591/j.cnki.cn11-1974/tf.2021060010
Citation: JIA Wen-qing, LIU Xiang-bing, XU Chao-liang, LI Yuan-fei, QIAN Wang-jie, QUAN Qi-wei, YIN Jian. Research progress on FeCrAl alloys used for nuclear fuel cladding prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2022, 40(1): 22-32. doi: 10.19591/j.cnki.cn11-1974/tf.2021060010

粉末冶金法制备核燃料包壳FeCrAl合金研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2021060010
基金项目: 国家自然科学基金资助项目(U1867215,12075274);广东省基础与应用基础研究重大项目(2019B030302011)
详细信息
    通讯作者:

    E-mail: liuxbing@cgnpc.com.cn

  • 中图分类号: TL341

Research progress on FeCrAl alloys used for nuclear fuel cladding prepared by powder metallurgy

More Information
  • 摘要: 燃料包壳是核反应堆安全运行的重要保障。福岛核事故后,国内外开展了大量新型事故容错燃料包壳的研发工作。由于具有抗高温氧化和高强度等优异的综合性能,FeCrAl合金已成为新一代事故容错燃料包壳的重要候选材料之一。经过多年积累,核燃料包壳FeCrAl合金的设计和制备研究已取得一定进展。利用粉末冶金方法制备性能更为优异的氧化物弥散强化FeCrAl合金前景广阔,受到国内外学者的广泛关注。本文综述了核燃料包壳FeCrAl合金的成分设计、熔炼制备和粉末冶金制备的研究现状,分析了不同方法制备合金的组织性能及存在的问题,对未来核燃料包壳FeCrAl合金的设计和制备进行了展望。
  • 图  1  核燃料包壳FeCrAl合金成分设计范围[11]

    Figure  1.  Composition design range of the FeCrAl alloys used for the nuclear fuel cladding[11]

    图  2  添加不同元素对FeCrAl合金力学性能的影响[5]

    Figure  2.  Mechanical properties of the FeCrAl alloys added by the different elements[5]

    图  3  FeCrAl合金第二相表征[2]:(a)C35MC;(b)C35MNC;(c)C35MN

    Figure  3.  Second phase characterization in FeCrAl alloys[2]: (a) C35MC; (b) C35MNC; (c) C35MN

    图  4  制备成形的FeCrAl合金管材(a)和管材截面金相组织(b)[37]

    Figure  4.  FeCrAl tubes fabricated by the tube drawing (a) and the cross-section optical micrograph of the FeCrAl tube (b)[37]

    图  5  机械合金化和热挤压方法制备氧化物弥散强化FeCrAl合金示意图[44]

    Figure  5.  Schematic of ODS FeCrAl Alloy Manufacturing process by mechanical alloying and hot extrusion[44]

    图  6  热等静压制备工艺流程[51]

    Figure  6.  Schematic of the basic HIP production process[51]

    图  7  MA957合金的金相组织:(a)原始状态;(b)1300 ℃退火1 h;(c)1300 ℃退火24 h[57]

    Figure  7.  Optical micrographs of MA957: (a) as-received condition; (b) annealing for 1 h at 1300 ℃; (c) annealing for 24 h at 1300 ℃[57]

    图  8  常规熔炼FeCrAl合金(a)与热等静压法制备APMT合金(b)中子辐照前后拉伸曲线 [22]

    Figure  8.  Tensile curves before and after the neutron irradiation for FeCrAl alloys by melting method (a) and APMT alloys by HIP (b)[22]

    图  9  不同机制的强化效果随温度的变化[68]

    Figure  9.  Temperature dependency of the strengthening effects in the different mechanisms [68]

    图  10  放电等离子烧结(a)和热等静压方法(b)制备FeCrAl合金抛光组织对比[70]

    Figure  10.  Polishing images of the SPS (a) and HIP (b) FeCrAl samples[70]

    表  1  不同方法制备FeCrAl合金晶粒尺寸与拉伸性能

    Table  1.   Grain size and tensile properties of the FeCrAl alloy prepared by various methods

    制备方法平均晶粒尺寸 / μm拉伸强度 / MPa参考文献
    室温300 ℃
    传统熔炼法电弧熔炼/真空感应熔炼20~500459~811377~680[2, 76]
    粉末冶金法热挤压0.3~4.61117~13161150[1920, 30, 49]
    热等静压36~150550~960400~800[2, 55]
    放电等离子烧结1.6730~16421477[68, 70]
    选择性激光烧结0.5~50.0400~600[53, 73]
    下载: 导出CSV
  • [1] Allison C M, Hohorst J K, Allison B S, et al. Preliminary assessment of the possible BWR core/vessel damage states for Fukushima Daiichi Station blackout scenarios using RELAP/SCDAPSIM. Sci Technol Nucl Install, 2012, 2012: 646327
    [2] Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. J Nucl Mater, 2015, 467: 703 doi: 10.1016/j.jnucmat.2015.10.019
    [3] Gao S X, Li W J, Chen P, et al. Study on irradiation behavior of fuel rods with FeCrAl cladding. Nucl Power Eng, 2017, 38(5): 175

    高士鑫, 李文杰, 陈平, 等. FeCrAl包壳燃料棒辐照行为研究. 核动力工程, 2017, 38(5): 175
    [4] Zhou J, Qiu S Y, Du P N, et al. Research progress in the FeCrAl alloys for accident tolerant fuel cladding. Mater Rev, 2017, 31(Suppl 2): 47

    周军, 邱绍宇, 杜沛南, 等. 耐事故燃料包壳用FeCrAl不锈钢的研究进展. 材料导报, 2017, 31(增刊2): 47
    [5] Huang X, Li X Y, Fang X D, et al. Research progress in FeCrAl alloys for accident-tolerant fuel cladding. J Mater Eng, 2020, 48(3): 19 doi: 10.11868/j.issn.1001-4381.2018.001165

    黄希, 李小燕, 方晓东, 等. 容错事故燃料包壳用FeCrAl合金的研究进展. 材料工程, 2020, 48(3): 19 doi: 10.11868/j.issn.1001-4381.2018.001165
    [6] Rebak R B, Terrani K A, Fawcett R M. FeCrAl alloys for accident tolerant Fuel cladding in light water reactors // ASME 2016 Pressure Vessels and Piping Conference. Vancouver, 2016: 1
    [7] Rebak R B. Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants. EPJ Nuclear Sci Technol, 2017, 3: 34 doi: 10.1051/epjn/2017029
    [8] Terrani K A. Accident tolerant fuel cladding development: Promise, status, and challenges. J Nucl Mater, 2018, 501: 13 doi: 10.1016/j.jnucmat.2017.12.043
    [9] Liu J K, Zhang X H, Yun D. A complete review and a prospect on the candidate materials for accident-tolerant fuel claddings. Mater Rev, 2018, 32(11): 1757 doi: 10.11896/j.issn.1005-023X.2018.11.001

    刘俊凯, 张新虎, 恽迪. 事故容错燃料包壳候选材料的研究现状及展望. 材料导报, 2018, 32(11): 1757 doi: 10.11896/j.issn.1005-023X.2018.11.001
    [10] Field K G, Yamamoto Y, Pint B A, et al. Accident tolerant FeCrAl fuel cladding: current status towards commercialization // Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. Portland, 2019: 1381
    [11] Gussev M N, Field K G, Yamamoto Y. Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys. Mater Des, 2017, 129: 227 doi: 10.1016/j.matdes.2017.05.009
    [12] Bai G H, Xue F, Zhang Y W, et al. Hot deformation behavior and processing maps of FeCrAl alloy for nuclear fuel cladding. Rare Met Mater Eng, 2020, 49(7): 2340

    柏广海, 薛飞, 张晏玮, 等. 燃料包壳用FeCrAl合金变形行为与热加工图研究. 稀有金属材料与工程, 2020, 49(7): 2340
    [13] Han W T, Yabuuchi K, Kimura A, et al. Effect of Cr/Al contents on the 475 ℃ age-hardening in oxide dispersion strengthened ferritic steels. Nucl Mater Energy, 2016, 9: 610 doi: 10.1016/j.nme.2016.05.015
    [14] Liu Z, Han Q, Guo Y L, et al. Development of interatomic potentials for Fe–Cr–Al alloy with the particle swarm optimization method. J Alloys Compd, 2019, 780: 881 doi: 10.1016/j.jallcom.2018.11.079
    [15] Tu M H, Hu Y. Overview of the developpement course of FeCrAl alloys for the accident-tolerant fuel cladding // Progress Report on China Nuclear Science & Technology (Vol. 5). Weihai, 2017: 77

    涂蒙河, 胡勇. ATF用FeCrAl合金发展历程概述 // 中国核科学技术进展报告(第五卷). 威海, 2017: 77
    [16] Ukai S, Fujiwara M. Perspective of ODS alloys application in nuclear environments. J Nucl Mater, 2002, 307: 749
    [17] Ohtsuka S, Ukai S, Fujiwara M, et al. Nano-structure control in ODS martensitic steels by means of selecting titanium and oxygen contents. J Phys Chem Solids, 2005, 66(2-4): 571 doi: 10.1016/j.jpcs.2004.06.033
    [18] Kimura A, Kasada R, Iwata N, et al. Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems. J Nucl Mater, 2011, 417(1-3): 176 doi: 10.1016/j.jnucmat.2010.12.300
    [19] Dou P, Kimura A, Kasada R, et al. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition. J Nucl Mater, 2014, 444(1-3): 441 doi: 10.1016/j.jnucmat.2013.10.028
    [20] Dou P, Kimura A, Kasada R, et al. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition. J Nucl Mater, 2017, 485: 189 doi: 10.1016/j.jnucmat.2016.12.001
    [21] Field K G, Hu X X, Littrell K C, et al. Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys. J Nucl Mater, 2015, 465: 746 doi: 10.1016/j.jnucmat.2015.06.023
    [22] Field K G, Briggs S A, Sridharan K, et al. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys. J Nucl Mater, 2017, 489: 118 doi: 10.1016/j.jnucmat.2017.03.038
    [23] Briggs S A, Edmondson P D, Littrell K C, et al. A combined APT and SANS investigation of α′ phase precipitation in neutron-irradiated model FeCrAl alloys. Acta Mater, 2017, 129: 217 doi: 10.1016/j.actamat.2017.02.077
    [24] Du P N, Zheng J Y, Wang H, et al. Effects of Nb content and annealing temperature on mechanical properties of FeCrAl alloy. Heat Treat Met, 2018, 43(12): 83

    杜沛南, 郑继云, 王辉, 等. Nb含量及退火温度对FeCrAl合金力学性能的影响. 金属热处理, 2018, 43(12): 83
    [25] Su H Q. Study on Mechanics and High Temperature Oxidation of FeCrAl Cladding Materials by Al Element [Dissertation]. Harbin: Harbin Engineering University, 2019

    苏鸿全. Al元素对Fe–Cr–Al包壳材料力学及高温氧化规律研究[学位论文]. 哈尔滨: 哈尔滨工程大学, 2019
    [26] Zhao L. The Mechanical Properties and Deformation Behavior of Micro-Pillars of Fe–13Cr–5Al–Mo Alloy [Dissertation]. Harbin: Harbin Institute of Technology, 2018

    赵琳. Fe–13Cr–5Al–Mo合金微柱力学性能与变形行为研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2018
    [27] Dong H Q. Effect of Zr, Hf Addition on the Microstructure and Tensile Properties of FeCrAl-ODS Steels [Dissertation]. Tianjin: Tianjin University, 2017

    董红庆. Zr、Hf对Fe–Cr–Al系ODS钢显微组织和拉伸性能的影响[学位论文]. 天津: 天津大学, 2017
    [28] Li B, Wu S X, Yan Y X, et al. Y–Fe phase and its effects on microstructure and properties in Fe–15Cr–4Al–Y alloys. J Chin Soc Rare Earths, 1997, 15(2): 139 doi: 10.3321/j.issn:1000-4343.1997.02.013

    李碚, 吴双霞, 颜玉新, 等. Fe–15Cr–4Al–Y合金中的Y–Fe相及其作用. 中国稀土学报, 1997, 15(2): 139 doi: 10.3321/j.issn:1000-4343.1997.02.013
    [29] Sun Z Q, Bei H B, Yamamoto Y. Microstructural control of FeCrAl alloys using Mo and Nb additions. Mater Charact, 2017, 132: 126 doi: 10.1016/j.matchar.2017.08.008
    [30] Unocic K A, Pint B A, Hoelzer D T. Advanced TEM characterization of oxide nanoparticles in ODS Fe–12Cr–5Al alloys. J Mater Sci, 2016, 51(20): 9190 doi: 10.1007/s10853-016-0111-5
    [31] Dong H Q, Yu L M, Liu Y C, et al. Effect of hafnium addition on the microstructure and tensile properties of aluminum added high-Cr ODS steels. J Alloys Compd, 2017, 702: 538 doi: 10.1016/j.jallcom.2017.01.298
    [32] García-Junceda A, Macía E, Garbiec D, et al. Effect of small variations in Zr content on the microstructure and properties of ferritic ODS steels consolidated by SPS. Metals, 2020, 10(3): 348 doi: 10.3390/met10030348
    [33] He Y, Liu J H, Han Z B, et al. Effects of La on mechanical properties of fecral stainless steel under high temperature. Contin Cast, 2015, 40(4): 1

    何杨, 刘建华, 韩志彪, 等. 稀土镧对FeCrAl不锈钢高温力学性能的影响. 连铸, 2015, 40(4): 1
    [34] Naumenko D, Le-Coze J, Wessel E, et al. Effect of trace amounts of carbon and nitrogen on the high temperature oxidation resistance of high purity FeCrAl alloys. Mater Trans, 2002, 43(2): 168 doi: 10.2320/matertrans.43.168
    [35] Sun Z Q, Yamamoto Y, Chen X. Impact toughness of commercial and model FeCrAl alloys. Mater Sci Eng A, 2018, 734: 93 doi: 10.1016/j.msea.2018.07.074
    [36] Sun Z Q, Edmondson P D, Yamamoto Y. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys. Acta Mater, 2018, 144: 716 doi: 10.1016/j.actamat.2017.11.027
    [37] Sun Z Q, Yamamoto Y. Processability evaluation of a Mo-containing FeCrAl alloy for seamless thin-wall tube fabrication. Mater Sci Eng A, 2017, 700: 554 doi: 10.1016/j.msea.2017.06.036
    [38] Yamamoto Y, Sun Z Q, Pint B A, et al. Optimized Gen-II FeCrAl Cladding Production in Large Quantity for Campaign Testing. Oak Ridge: Oak Ridge National Laboratory, 2016
    [39] Hou P Y, Zhang X F, Cannon R M. Impurity distribution in Al2O3 formed on an FeCrAl alloy. Scr Mater, 2004, 50(1): 45 doi: 10.1016/j.scriptamat.2003.09.044
    [40] He Y. Fundamental Research on the Solidification Characteristics and High-Temperature Mechanical Properties of High-Al FeCrAl Stainless Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    何杨. 高铝FeCrAl不锈钢凝固特性及高温力学性能基础研究[学位论文]. 北京: 北京科技大学, 2019
    [41] Shi Z M, Han F S. The microstructure and mechanical properties of micro-scale Y2O3 strengthened 9Cr steel fabricated by vacuum casting. Mater Des, 2015, 66: 304 doi: 10.1016/j.matdes.2014.10.075
    [42] Zhang Y, Guo W W, Yan Q Z. Composition, microstructure and mechanical homogeneity evaluation of the Y-bearing 9Cr F/M steel fabricated by VIM & casting technique. Mater Res Express, 2020, 7(3): 036518 doi: 10.1088/2053-1591/ab7c83
    [43] Dryepondt S, Unocic K A, Hoelzer D T, et al. Development of ODS FeCrAl Alloys for Accident-Tolerant Fuel Cladding. Oak Ridge: Oak Ridge National Laboratory, 2015
    [44] Ukai S, Nishida T, Okada H, et al. Development of oxide dispersion strengthened ferritic steels for FBR core application, (I) improvement of mechanical properties by recrystallization processing. J Nucl Sci Technol, 1997, 34(3): 256 doi: 10.1080/18811248.1997.9733658
    [45] Dou P, Kimura A, Okuda T, et al. Effects of extrusion temperature on the nano-mesoscopic structure and mechanical properties of an Al-alloyed high-Cr ODS ferritic steel. J Nucl Mater, 2011, 417(1-3): 166 doi: 10.1016/j.jnucmat.2011.01.061
    [46] Dou P, Sang W, Kimura A. Morphology, crystal and metal/oxide interface structures of nanoparticles in Fe–15Cr–2W–0.5Ti–7Al–0.4 Zr–0.5 Y2O3 ODS steel. J Nucl Mater, 2019, 523: 231
    [47] Ukai S, Harada M, Okada H, et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials. J Nucl Mater, 1993, 204: 65 doi: 10.1016/0022-3115(93)90200-I
    [48] Iwata N Y, Kimura A, Fujiwara M, et al. Effect of milling on morphological and microstructural properties of powder particles for High-Cr Oxide dispersion strengthened ferritic steels. J Nucl Mater, 2007, 367: 191
    [49] Massey C P, Dryepondt S N, Edmondson P D, et al. Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of Low-Cr ODS FeCrAl alloys. J Nucl Mater, 2018, 512: 227 doi: 10.1016/j.jnucmat.2018.10.017
    [50] Xu H J. Research on Microstructure and Mechanical Property of 15Cr-ODS Ferritic Alloys [Dissertation]. Shenyang: Northeastern University, 2017

    徐海健. 15Cr-ODS铁素体合金微观结构及力学性能的研究[学位论文]. 沈阳: 东北大学, 2017
    [51] Jönsson B, Berglund R, Magnusson J, et al. High temperature properties of a new powder metallurgical FeCrAl alloy. Mater Sci Forum, 2004, 461: 455
    [52] Wen D H. Composition Optimization and High-Temperature Microstructural Stabilities of Stainless Steels for Nuclear Fuel Cladding Materials [Dissertation]. Dalian: Dalian University of Technology, 2019

    温冬辉. 核燃料包壳材料不锈钢的成分优化与高温组织稳定性研究[学位论文]. 大连: 大连理工大学, 2019
    [53] Boegelein T, Dryepondt S N, Pandey A, et al. Mechanical response and deformation mechanisms of ferritic oxide dispersion strengthened steel structures produced by selective laser melting. Acta Mater, 2015, 87: 201 doi: 10.1016/j.actamat.2014.12.047
    [54] Czyrska-Filemonowicz A, Dubiel B. Mechanically alloyed, ferritic oxide dispersion strengthened alloys: structure and properties. J Mater Process Technol, 1997, 64(1-3): 53 doi: 10.1016/S0924-0136(96)02553-8
    [55] Li J, Wu S J, Ma P, et al. Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process. Mater Sci Eng A, 2019, 757: 42 doi: 10.1016/j.msea.2019.04.088
    [56] Pimentel G, Chao J, Capdevila C. Recrystallization process in Fe–Cr–Al oxide dispersion-strengthened alloy: Microstructural evolution and recrystallization mechanism. JOM, 2014, 66(5): 780 doi: 10.1007/s11837-014-0916-0
    [57] Miller M K, Hoelzer D T, Kenik E A, et al. Nanometer scale precipitation in ferritic MA/ODS alloy MA957. J Nucl Mater, 2004, 329-333: 338 doi: 10.1016/j.jnucmat.2004.04.085
    [58] Chao J, Capdevila-Montes C, González-Carrasco J L. On the delamination of FeCrAl ODS alloys. Mater Sci Eng A, 2009, 515(1-2): 190 doi: 10.1016/j.msea.2009.03.017
    [59] Quadakkers W J, Elschner A, Speier W, et al. Composition and growth mechanisms of alumina scales on FeCrAl-based alloys determined by SNMS. Appl Surf Sci, 1991, 52(4): 271 doi: 10.1016/0169-4332(91)90069-V
    [60] Czyrska-Filemonowicz A, Szot K, Wasilkowska A, et al. Microscopy (AFM, TEM, SEM) studies of oxide scale formation on FeCrAl based ODS alloys. Solid State Ionics, 1999, 117(1-2): 13 doi: 10.1016/S0167-2738(98)00243-4
    [61] Czyrska-Filemonowicz A, Clemens D, Quadakkers W J. The effect of high temperature exposure on the structure and oxidation behaviour of mechanically alloyed ferritic ODS alloys. J Mater Process Technol, 1995, 53(1-2): 93 doi: 10.1016/0924-0136(95)01965-H
    [62] García-Rodríguez N, Campos M, Torralba J M, et al. Capability of mechanical alloying and SPS technique to develop nanostructured high Cr, Al alloyed ODS steels. Mater Sci Technol, 2014, 30(13): 1676 doi: 10.1179/1743284714Y.0000000595
    [63] Shibata H, Ukai S, Oono N H, et al. Development of accident tolerant FeCrAl-ODS steels utilizing Ce-oxide particles dispersion. J Nucl Mater, 2018, 502: 228 doi: 10.1016/j.jnucmat.2018.02.020
    [64] Shibata H, Ukai S, Oono N H, et al. Development of accident-tolerant FeCrAl steels containing Al2O3 particles by means of internal Al oxidation. Metall Mater Trans A, 2019, 50(4): 1816 doi: 10.1007/s11661-019-05122-2
    [65] Zhang S H, Ukai S, Nishikawa T, et al. Development and characterization of γ/α transformable FeCrAl-ODS alloys by cobalt addition. J Alloys Compd, 2019, 797: 390 doi: 10.1016/j.jallcom.2019.05.024
    [66] Nishikawa T, Zhang S H, Ukai S, et al. Development of α/γ transformable FeCrAl-ODS alloys by nickel addition. Mater Trans, 2019, 60(2): 355 doi: 10.2320/matertrans.M2018271
    [67] Ding R F, Wang H, Jiang Y, et al. Effects of ZrC addition on the microstructure and mechanical properties of Fe–Cr–Al alloys fabricated by spark plasma sintering. J Alloys Compd, 2019, 805: 1025 doi: 10.1016/j.jallcom.2019.07.181
    [68] Zhang S H, Ukai S, Aghamiri S M S, et al. Tensile properties of Co-added FeCrAl oxide dispersion strengthened alloy. J Alloys Compd, 2021, 852: 156956 doi: 10.1016/j.jallcom.2020.156956
    [69] Naimi F, Niepce J-C, Ariane M, et al. Joining of oxide dispersion-strengthened steel using spark plasma sintering. Metals, 2020, 10(8): 1040 doi: 10.3390/met10081040
    [70] Liu T, Shen H L, Zhang T W, et al. Effects of consolidation process on the microstructure and mechanical properties of ODS ferritic alloy. Mater Sci Forum, 2013, 747: 507
    [71] Liu Z C, Wang G W, Xiao X Y, et al. Process optimization of selective laser melting nickel-based superalloy. Powder Metall Technol, 2021, 39(1): 81

    刘泽程, 王国伟, 肖祥友, 等. 选择性激光熔化镍基高温合金的工艺优化. 粉末冶金技术, 2021, 39(1): 81
    [72] Ni X Q, Kong D C, Wen Y, et al. Influence factors and improvement methods on the porosity of 3D printing metal materials. Powder Metall Technol, 2019, 37(3): 163

    倪晓晴, 孔德成, 温莹, 等. 3D打印金属材料中孔隙率的影响因素和改善方法. 粉末冶金技术, 2019, 37(3): 163
    [73] Walker J C, Berggreen K M, Jones A R, et al. Fabrication of Fe–Cr–Al oxide dispersion strengthened PM2000 alloy using selective laser melting. Adv Eng Mater, 2009, 11(7): 541 doi: 10.1002/adem.200800407
    [74] Gao R, Zeng L F, Ding H L, et al. Characterization of oxide dispersion strengthened ferritic steel fabricated by electron beam selective melting. Mater Des, 2016, 89: 1171 doi: 10.1016/j.matdes.2015.10.073
    [75] Maloy S A, Aydogan E, Anderoglu O, et al. Viability of Thin Wall Tube Forming of ATF FeCrAl. Los Alamos: Los Alamos National Laboratory, 2016
    [76] Field K G, Snead M A, Yamamoto Y, et al. Handbook on the Material Properties of FeCrAl Alloys for Nuclear Power Production Applications. Oak Ridge: Oak Ridge National Laboratory, 2017
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1818
  • HTML全文浏览量:  279
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回