钛合金纤维多孔材料制备及压缩性能

王建忠 敖庆波 马军 李爱君

王建忠, 敖庆波, 马军, 李爱君. 钛合金纤维多孔材料制备及压缩性能[J]. 粉末冶金技术, 2023, 41(2): 125-130. doi: 10.19591/j.cnki.cn11-1974/tf.2021080005
引用本文: 王建忠, 敖庆波, 马军, 李爱君. 钛合金纤维多孔材料制备及压缩性能[J]. 粉末冶金技术, 2023, 41(2): 125-130. doi: 10.19591/j.cnki.cn11-1974/tf.2021080005
WANG Jianzhong, AO Qingbo, MA Jun, LI Aijun. Preparation and compressive properties of Ti alloy fiber porous materials[J]. Powder Metallurgy Technology, 2023, 41(2): 125-130. doi: 10.19591/j.cnki.cn11-1974/tf.2021080005
Citation: WANG Jianzhong, AO Qingbo, MA Jun, LI Aijun. Preparation and compressive properties of Ti alloy fiber porous materials[J]. Powder Metallurgy Technology, 2023, 41(2): 125-130. doi: 10.19591/j.cnki.cn11-1974/tf.2021080005

钛合金纤维多孔材料制备及压缩性能

doi: 10.19591/j.cnki.cn11-1974/tf.2021080005
基金项目: 陕西省科技资源开放共享平台资助项目(2020PT-039);陕西省重点研发计划资助项目(2020KW-037,2020GY-289)
详细信息
    通讯作者:

    E-mail: panpan0605@163.com

  • 中图分类号: TG146.4

Preparation and compressive properties of Ti alloy fiber porous materials

More Information
  • 摘要: 为降低钛及钛合金制品的成本,以钛锭表面切削下来的钛屑(切削纤维)为原料,经过清洗、剪切、压制、高温约束烧结等工序制备成钛合金纤维多孔材料,观察材料微观结构,分析压制压力和孔隙率之间的关系,并研究烧结温度、纤维宽度、孔隙率对钛合金纤维多孔材料压缩性能的影响规律。结果表明,钛合金纤维多孔材料内部均为通孔,随着压制压力的增加,钛合金纤维多孔材料的孔隙率随之降低。纤维宽度为2 mm,孔隙率为56.0%,烧结温度为1200 ℃条件下制得的钛合金纤维多孔材料平台应力达17.34 MPa。本文实现了原材料零成本制备钛合金纤维多孔材料,可用于阻尼减振、冲击防护等领域。
  • 图  1  钛合金纤维多孔材料的微观形貌

    Figure  1.  Microstructure of the Ti alloy fiber porous materials

    图  2  不同压制压力所制的钛合金纤维多孔材料微观形貌:(a)20 MPa;(b)60 MPa

    Figure  2.  Microstructures of the Ti alloy fiber porous materials prepared by the different pressing pressures: (a) 20 MPa; (b) 60 MPa

    图  3  钛合金纤维多孔材料的压缩应力‒应变曲线

    Figure  3.  Compressive stress‒strain curves of the Ti alloy fiber porous materials

    图  4  纤维宽度对钛合金纤维多孔材料压缩性能的影响:(a)孔隙率63%;(b)孔隙率60%;(c)孔隙率57%

    Figure  4.  Effect of the fiber width on the compressive properties of the Ti alloy fiber porous materials: (a) porosity of 63%; (b) porosity of 60%; (c) porosity of 57%

    图  5  不同纤维宽度的钛合金纤维多孔材料微观形貌:(a)孔隙率63%,纤维宽度为2 mm;(b)孔隙率63%,纤维宽度为4 mm;(c)孔隙率57%,纤维宽度为2 mm;(d)孔隙率57%,纤维宽度为4 mm

    Figure  5.  Microstructures of the Ti alloy fiber porous materials with the different fiber width: (a) porosity of 63%, fiber width of 2 mm; (b) porosity of 63%, fiber width of 4 mm; (c) porosity of 57%, fiber width of 2 mm; (d) porosity of 57%, fiber width of 4 mm

    图  6  烧结温度对钛合金纤维多孔材料压缩性能的影响

    Figure  6.  Effect of sintering temperature on the compressive properties of the Ti alloy fiber porous materials

    图  7  孔隙率对钛合金纤维多孔材料压缩性能的影响

    Figure  7.  Effect of porosity on the compressive properties of the Ti alloy fiber porous materials

    表  1  压制压力与钛合金纤维多孔材料孔隙率的关系

    Table  1.   Relationship between the pressing pressure and porosity of the Ti alloy fiber porous materials

    压制压力 / MPa孔隙率 / %
    2066.2
    4064.0
    6060.1
    8056.7
    下载: 导出CSV

    表  2  不同孔隙率的钛合金纤维多孔材料平台应力

    Table  2.   Platform stress of the Ti alloy fiber porous materials with the different porosity

    平台应力 / MPa孔隙率 / %
    2.2470.8
    4.9165.6
    10.6163.0
    13.7460.4
    17.3456.0
    下载: 导出CSV
  • [1] Guo L, He W X, Zhou P, et al. Research status and development prospect of titanium and titanium alloy products in China. Hot Working Technol, 2020, 49(22): 22 doi: 10.14158/j.cnki.1001-3814.20192060

    郭鲤, 何伟霞, 周鹏, 等. 我国钛及钛合金产品的研究现状及发展前景. 热加工工艺, 2020, 49(22): 22 doi: 10.14158/j.cnki.1001-3814.20192060
    [2] Liu Y N, Wang Z X, Liu J P, et al. Research status and progress of titanium foams prepared by space holder technique. Powder Metall Technol, 2019, 37(4): 306

    刘永宁, 王智祥, 刘锦平, 等. 造孔剂法制备泡沫钛的研究现状与进展. 粉末冶金技术, 2019, 37(4): 306
    [3] Ren J S, Zhang Y M, Tan J, et al. Current research status and trend of titanium alloys for biomendical applications. Mater Rev, 2016, 38(28): 384

    任军帅, 张英明, 谭江, 等. 生物医用钛合金材料发展现状及趋势. 材料导报, 2016, 38(28): 384
    [4] Han J Y, Luo J H, Yuan S B, et al. Research status of dental titanium and titanium alloys. Titanium Ind Prog, 2016, 33(3): 1 doi: 10.13567/j.cnki.issn1009-9964.2016.03.001

    韩建业, 罗锦华, 袁思波, 等. 口腔用钛及钛合金材料的研究现状. 钛工业进展, 2016, 33(3): 1 doi: 10.13567/j.cnki.issn1009-9964.2016.03.001
    [5] Wu Q C, Ji Z, Jia C C, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225 doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.011

    武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术, 2019, 37(3): 225 doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.011
    [6] Li X M, Liu L, Dong J, et al. Discussion on economic analysis and decreasing cost process of titanium and titanium alloys. Mater China, 2015, 34(5): 401

    李献民, 刘立, 董洁, 等. 钛及钛合金材料经济性及低成本方法论述. 中国材料进展, 2015, 34(5): 401
    [7] Ren X M, Ma B Y, Zhang B W, et al. Research progress of porous titanium and titanium alloy. Rare Met Cement Carb, 2018, 46(1): 61

    任鑫明, 马北越, 张博文, 等. 多孔钛及钛合金的研究进展. 稀有金属与硬质合金, 2018, 46(1): 61
    [8] Kuang M S, Hu W M, Guo A H, et al. Application of titanium and titanium alloys to ships of US navy. Torpedo Technol, 2012, 20(5): 331

    匡蒙生, 胡伟民, 郭爱红, 等. 钛及钛合金在美海军舰船上的应用. 鱼雷技术, 2012, 20(5): 331
    [9] Wang J Z, Ao Q B, Ma J, et al. Sound absorption performance of porous metal fiber materials with different structures. Appl Acoust, 2019, 145: 431 doi: 10.1016/j.apacoust.2018.10.014
    [10] Ao Q B, Wang J Z, Ma J, et al. Vibration-damping properties of stainless steel fiber porous materials. Hot Working Technol, 2021, 50(8): 30 doi: 10.14158/j.cnki.1001-3814.20190704

    敖庆波, 王建忠, 马军, 等. 不锈钢纤维多孔材料的阻尼减振性能. 热加工工艺, 2021, 50(8): 30 doi: 10.14158/j.cnki.1001-3814.20190704
    [11] Wu Y L, Li Y G, Ma W X. Research progress of metal fiber blended electromagnetic shielding fabric. Prog Text Sci Technol, 2020(6): 1 doi: 10.3969/j.issn.1673-0356.2020.06.002

    吴依琳, 李永贵, 麻文效. 金属纤维混纺电磁屏蔽织物的研究进展. 纺织科技进展, 2020(6): 1 doi: 10.3969/j.issn.1673-0356.2020.06.002
    [12] Xi Z P, Tang H P, Zhu J L, et al. Application of metal porous materials in energy and environmental protection. Rare Met Mater Eng, 2006, 35(Suppl 2): 413 doi: 10.3321/j.issn:1002-185X.2006.z2.101

    奚正平, 汤慧萍, 朱纪磊, 等. 金属多孔材料在能源与环保中的应用. 稀有金属材料与工程, 2006, 35(增刊 2): 413 doi: 10.3321/j.issn:1002-185X.2006.z2.101
    [13] Ma J, Wang J Z, Ao Q B, et al. A Preparation Process of Low-Cost Titanium Based Porous Material with High Energy Absorption Characteristics: China Patent, 202011178503. X. 2020-10-29

    马军, 王建忠, 敖庆波, 等. 一种具有高能量吸收特性的低成本钛基多孔材料制备工艺: 中国专利, 202011178503. X. 2020-10-29
    [14] Wang J Z, Tang H P, Ma Q, et al. Fabrication of high strength and ductile stainless steel fiber felts by sintering. JOM, 2016, 68(3): 890 doi: 10.1007/s11837-015-1803-z
    [15] Tang H P. Porous Metal Fiber Materials. Beijing: Metallurgical Industry Press, 2016

    汤慧萍. 金属纤维多孔材料. 北京: 冶金工业出版社, 2016
    [16] Qiao J C, Xi Z P, Tang H P, et al. Compressive behavior of porous metal fibers. Rare Met Mater Eng, 2008, 37(12): 2173 doi: 10.3321/j.issn:1002-185X.2008.12.024

    乔吉超, 奚正平, 汤慧萍, 等. 金属纤维多孔材料的压缩行为. 稀有金属材料与工程, 2008, 37(12): 2173 doi: 10.3321/j.issn:1002-185X.2008.12.024
    [17] Wang J Y, Tang H P, Zhu J L, et al. Effect of porosity on compressive properties of porous sintered stainless steel fiber media. Powder Metall Technol, 2009, 27(5): 323 doi: 10.19591/j.cnki.cn11-1974/tf.2009.05.001

    王建永, 汤慧萍, 朱纪磊, 等. 孔隙度对烧结不锈钢纤维多孔材料压缩性能的影响. 粉末冶金技术, 2009, 27(5): 323 doi: 10.19591/j.cnki.cn11-1974/tf.2009.05.001
    [18] Wang J Z, Xu Z G, Ao Q B, et al. Status quo of mechanical properties of porous metal fibrous materials. Rare Met Mater Eng, 2016, 45(6): 1636

    王建忠, 许忠国, 敖庆波, 等. 金属纤维多孔材料力学性能研究现状. 稀有金属材料与工程, 2016, 45(6): 1636
    [19] Wang J Z, Ao Q B, Ma J, et al. Quasi-static compressive performance of porous stainless steel fiber materials. J Funct Mater, 2018, 49(9): 107 doi: 10.3969/j.issn.1001-9731.2018.09.019

    王建忠, 敖庆波, 马军, 等. 不锈钢纤维多孔材料的准静态压缩性能. 功能材料, 2018, 49(9): 107 doi: 10.3969/j.issn.1001-9731.2018.09.019
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  66
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-22
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回