40%SiCp/Al复合材料热变形行为及热加工图

郝世明 刘鹏茹 庞晋安 彭名卿 吴浩展 袁浩然

郝世明, 刘鹏茹, 庞晋安, 彭名卿, 吴浩展, 袁浩然. 40%SiCp/Al复合材料热变形行为及热加工图[J]. 粉末冶金技术, 2023, 41(6): 564-571, 576. doi: 10.19591/j.cnki.cn11-1974/tf.2021080007
引用本文: 郝世明, 刘鹏茹, 庞晋安, 彭名卿, 吴浩展, 袁浩然. 40%SiCp/Al复合材料热变形行为及热加工图[J]. 粉末冶金技术, 2023, 41(6): 564-571, 576. doi: 10.19591/j.cnki.cn11-1974/tf.2021080007
HAO Shiming, LIU Pengru, PANG Jin’an, PENG Mingqing, WU Haozhan, YUAN Haoran. Hot deformation behavior and hot processing map of 40%SiCp/Al composites[J]. Powder Metallurgy Technology, 2023, 41(6): 564-571, 576. doi: 10.19591/j.cnki.cn11-1974/tf.2021080007
Citation: HAO Shiming, LIU Pengru, PANG Jin’an, PENG Mingqing, WU Haozhan, YUAN Haoran. Hot deformation behavior and hot processing map of 40%SiCp/Al composites[J]. Powder Metallurgy Technology, 2023, 41(6): 564-571, 576. doi: 10.19591/j.cnki.cn11-1974/tf.2021080007

40%SiCp/Al复合材料热变形行为及热加工图

doi: 10.19591/j.cnki.cn11-1974/tf.2021080007
基金项目: 国家自然科学基金资助项目(52171138);河南省自然科学基金资助项目(182300410260);河南科技大学大学生研究训练计划资助项目(2020185,2021046)
详细信息
    通讯作者:

    E-mail: haoshm@haust.edu.cn

  • 中图分类号: GB331

Hot deformation behavior and hot processing map of 40%SiCp/Al composites

More Information
  • 摘要: 采用Glebble-1500D热模拟试验机,在350~500 ℃变形温度、0.01~10.00 s−1应变速率条件下进行等温压缩变形,研究40%SiCp/Al复合材料(体积分数)的热加工性能。通过热变形真应力-真应变曲线分析复合材料的热变形规律,建立材料本构方程,利用动态材料模型计算出应变速率敏感指数和功率耗散效率系数,绘制出功率耗散图、失稳图及二维加工图。结果表明,应变速率和变形温度显著影响流变应力,应变速率一定时,变形温度升高,流变应力减小;在相同的变形温度下,随应变速率的增加,流变应力也随之升高。根据加工图可知,在高温高应变速率条件下,材料的功率耗散效率系数大,说明该变形区域发生了组织转变;应变对失稳区域和加工区域影响不大,功率耗散效率系数随应变的增加而增大。40%SiCp/Al复合材料建议热加工条件为变形温度436~491 ℃,应变速率0.04~9.97 s−1
  • 图  1  40%SiCp/Al复合材料微观组织

    Figure  1.  Microstructure of the 40%SiCp/Al composites

    图  2  不同应变速率下40%SiCp/Al复合材料的真应力-应变曲线:(a)0.01 s−1;(b)0.10 s−1;(c)1.00 s−1;(d)10.00 s−1

    Figure  2.  True stress-strain curves of the 40%SiCp/Al composites at different strain rates: (a) 0.01 s−1; (b) 0.10 s−1; (c) 1.00 s−1; (d) 10.00 s−1

    图  3  真应变为0.1时应力、应变速率和温度关系:(a)ln$ \dot \varepsilon $-σ;(b)ln$ \dot \varepsilon $-lnσ;(c)ln$ \dot \varepsilon $-ln[sinh(ασ)];(d)ln[sinh(ασ)]-1/T

    Figure  3.  Relationship between stress, stress rate, and temperature at true strain of 0.1: (a) ln$ \dot \varepsilon $-σ; (b) ln$ \dot \varepsilon $-lnσ; (c) ln$ \dot \varepsilon $-ln[sinh(ασ)]; (d) ln[sinh(ασ)]-1/T

    图  4  真应变为0.3时应力、应变速率和温度关系:(a)ln$ \dot \varepsilon $-σ;(b)ln$ \dot \varepsilon $-lnσ;(c)ln$ \dot \varepsilon $-ln[sinh(ασ)];(d)ln[sinh(ασ)]-1/T

    Figure  4.  Relationship between stress, stress rate, and temperature at true strain of 0.3: (a) ln$ \dot \varepsilon $-σ; (b) ln$ \dot \varepsilon $-lnσ; (c) ln$ \dot \varepsilon $-ln[sinh(ασ)]; (d) ln[sinh(ασ)]-1/T

    图  5  真应变为0.5时应力、应变速率和温度关系:(a)ln$ \dot \varepsilon $-σ;(b)ln$ \dot \varepsilon $-lnσ;(c)ln$ \dot \varepsilon $-ln[sinh(ασ)];(d)ln[sinh(ασ)]-1/T

    Figure  5.  Relationship between stress, stress rate, and temperature at true strain of 0.5: (a) ln$ \dot \varepsilon $-σ; (b) ln$ \dot \varepsilon $-lnσ; (c) ln$ \dot \varepsilon $-ln[sinh(ασ)]; (d) ln[sinh(ασ)]-1/T

    图  6  不同真应变线下lnZ与ln[sinh(ασ)]关系:(a)0.1;(b)0.3;(c)0.5

    Figure  6.  Relationship between lnZ and ln[sinh(ασ)] at the different true strain: (a) 0.1; (b) 0.3; (c) 0.5

    图  7  不同真应变下实验值与计算值分析与对比:(a)0.1;(b)0.3;(c)0.5

    Figure  7.  Analysis and comparison of the experimental and calculated values at the different true strain: (a) 0.1; (b) 0.3; (c) 0.5

    图  8  应变为0.1时复合材料功率耗散图(a)、失稳图(b)和二维加工图(c)

    Figure  8.  Power dissipation diagram (a), instability diagram (b), and two-dimensional processing map (c) of the composites at the strain of 0.1

    图  9  应变为0.3时复合材料功率耗散图(a)、失稳图(b)和二维加工图(c)

    Figure  9.  Power dissipation diagram (a), instability diagram (b), and two-dimensional processing map (c) of the composites at the strain of 0.3

    图  10  应变为0.5时复合材料功率耗散图(a)、失稳图(b)和二维加工图(c)

    Figure  10.  Power dissipation diagram (a), instability diagram (b), and two-dimensional processing map (c) of the composites at the strain of 0.5

    表  1  不同应变量时材料常数计算结果

    Table  1.   Calculation results of the material constants at the different strains

    εβn1nMα / MPa−1lnAQ / (kJ·mol−1)
    0.10.1344088.9737136.6562572882.6490.01543824.52115157.288
    0.30.1335528.3875076.1496673088.2240.01626324.97749157.903
    0.50.1344078.9737156.6018922865.2100.01524524.62439157.273
    下载: 导出CSV
  • [1] Zheng J, Jia Z H, Ma G. Progress in research of SiC particle reinforced Al-based composites. Titanium Ind Prog, 2006, 23(6): 13

    郑晶, 贾志华, 马光. 碳化硅颗粒增强铝基复合材料的研究进展. 钛工业进展, 2006, 23(6): 13
    [2] Wang Y, Liu X D. Present status and development trend of SiCp/Al composites. Foundry Equip Technol, 2003(3): 20

    王莹, 刘向东. 碳化硅颗粒增强铝基复合材料的现状及发展趋势. 铸造设备研究, 2003(3): 20
    [3] Liu Y, Li L, Li C Y, et al. Research progress on high-strength and high-conductivity Al-graphene composites. Powder Metall Technol, 2021, 39(4): 358

    刘洋, 李雷, 历长云, 等. 高强高导铝−石墨烯复合材料研究进展. 粉末冶金技术, 2021, 39(4): 358
    [4] Zhou Y H. Main preparation processes and research status of SiC particle reinforced aluminum matrix composites. Tool Eng, 2017, 51(4): 7

    周艳华. 碳化硅颗粒增强铝基复合材料主要制备技术. 工具技术, 2017, 51(4): 7
    [5] Wang M, Guo D, Ding C F, et al. Research progress of machining of SiC particle reinforced aluminum matrix composites. Dev Innov Mach Electr Prod, 2016, 29(6): 76

    王明, 郭丹, 丁成富, 等. 碳化硅颗粒增强铝基复合材料加工研究进展. 机电产品开发与创新, 2016, 29(6): 76
    [6] Wei S H, Nie J H, Liu Y Q, et al. Effect of isothermal forging on fracture toughness of SiC particle reinforced aluminum matrix composites. Rare Met Mater Eng, 2017, 46(11): 3464

    魏少华, 聂俊辉, 刘彦强, 等. 等温锻造对碳化硅颗粒增强铝基复合材料断裂韧性的影响. 稀有金属材料与工程, 2017, 46(11): 3464
    [7] Gui M C, Wang D B, Wu J J, et al. Microstructure and mechanical properties of cast (Al-Si)/SiCp composites produced by liquid and semisolid double stirring process. Mater Sci Technol, 2013, 16(5): 556
    [8] Cui Y, Geng L, Yao Z K, et al. A new advance in the development of high-performance SiCp/Al composite. J Mater Sci Technol, 1997(3): 227
    [9] Wu G H, Kuang Z Y. Opportunities and challenges for metal matrix composites in the context of equipment upgrading. Strategic Study CAE, 2020, 22(2): 79 doi: 10.15302/J-SSCAE-2020.02.012

    武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战. 中国工程科学, 2020, 22(2): 79 doi: 10.15302/J-SSCAE-2020.02.012
    [10] Rawal S P. Metal-matrix composites for space applications. JOM, 2001, 53(4): 14 doi: 10.1007/s11837-001-0139-z
    [11] Miracle D B. Metal matrix composites from science to technological significance. Compos Sci Technol, 2005, 65(15-16): 2526 doi: 10.1016/j.compscitech.2005.05.027
    [12] Shao J C, Xiao B L, Wang Q Z, et al. Constitutive flow behavior and hot workability of powder metallurgy processed 20vol.% SiCp/2024Al composite. Mater Sci Eng A, 2010, 527(29): 7865
    [13] Rajamuthamil selvan M, Ramanathan S. Effect of silicon carbide volume fraction on the hot workability of 7075 aluminium-based metal-matrix composites. Int J Adv Manuf Technol, 2013, 67(5-8): 1711 doi: 10.1007/s00170-012-4604-3
    [14] Ghazani M S, Eghbali B. Strain hardening behavior, strain rate sensitivity and hot deformation maps of AISI 321 austenitic stainless steel. Int J Miner Metall Mater, 2021, 28(11): 1799 doi: 10.1007/s12613-020-2163-4
    [15] Sivakesavam O, Prasad Y V R K. Hot deformation behaviour of as-cast Mg-2Zn-1Mn alloy in compression: a study with processing map. Mater Sci Eng A, 2003, 362(1-2): 118 doi: 10.1016/S0921-5093(03)00296-X
    [16] Xiao B L, Huang Z Z, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites. Acta Metall Sin, 2019, 55(1): 59
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2016
  • HTML全文浏览量:  70
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回