机械合金化结合激光熔覆技术制备CoCrMoNbTi难熔高熵合金

何龙俊 张咪娜 叶旭阳 阮殿波 张文武

何龙俊, 张咪娜, 叶旭阳, 阮殿波, 张文武. 机械合金化结合激光熔覆技术制备CoCrMoNbTi难熔高熵合金[J]. 粉末冶金技术, 2023, 41(6): 500-507. doi: 10.19591/j.cnki.cn11-1974/tf.2021080011
引用本文: 何龙俊, 张咪娜, 叶旭阳, 阮殿波, 张文武. 机械合金化结合激光熔覆技术制备CoCrMoNbTi难熔高熵合金[J]. 粉末冶金技术, 2023, 41(6): 500-507. doi: 10.19591/j.cnki.cn11-1974/tf.2021080011
HE Longjun, ZHANG Mina, YE Xuyang, RUAN Dianbo, ZHANG Wenwu. CoCrMoNbTi refractory high-entropy alloys prepared by mechanical alloying combined with laser cladding[J]. Powder Metallurgy Technology, 2023, 41(6): 500-507. doi: 10.19591/j.cnki.cn11-1974/tf.2021080011
Citation: HE Longjun, ZHANG Mina, YE Xuyang, RUAN Dianbo, ZHANG Wenwu. CoCrMoNbTi refractory high-entropy alloys prepared by mechanical alloying combined with laser cladding[J]. Powder Metallurgy Technology, 2023, 41(6): 500-507. doi: 10.19591/j.cnki.cn11-1974/tf.2021080011

机械合金化结合激光熔覆技术制备CoCrMoNbTi难熔高熵合金

doi: 10.19591/j.cnki.cn11-1974/tf.2021080011
基金项目: 国家自然科学基金资助项目(51901236);浙江省博士后科研择优项目(zj2019166);浙江省重点研发项目(2020c01036)
详细信息
    通讯作者:

    E-mail: zhangmina@nimte.ac.cn(张咪娜)

    zhangwenwu@nimte.ac.cn(张文武)

  • 中图分类号: TG146.4+1; TF125

CoCrMoNbTi refractory high-entropy alloys prepared by mechanical alloying combined with laser cladding

More Information
  • 摘要: 采用机械合金化方法制备CoCrMoNbTi难熔高熵合金粉末,并通过激光熔覆技术成功制备出CoCrMoNbTi高熵合金涂层。研究了球磨时间对合金粉末组织形貌的影响,并利用X射线衍射仪、扫描电子显微镜和能谱仪等分析了高熵合金粉末和涂层的微观结构。结果表明,随着球磨时间的增加,单质金属的衍射峰按其熔点由低到高陆续消失。粉末微观形貌随球磨时间变化明显,粉末由原始状态被挤压成片状,片状粉末逐渐焊合在一起形成扁平状粉末颗粒。在球磨时间达到40 h时,粉末实现完全合金化,此时粉末形貌趋于球形且得到了极大的细化,粉末中各元素分布均匀,形成了稳定的单相体心立方固溶体结构。CoCrMoNbTi难熔高熵合金激光熔覆层成形质量良好,主要由体心立方固溶体和少量Cr2Nb、Co2Ti化合物组成,树枝晶组织细小致密。
  • 图  1  不同球磨时间CoCrMoNbTi难熔高熵合金粉末X射线衍射谱(a)和局部放大图(b)

    Figure  1.  XRD patterns (a) and the partial enlarger view (b) of the CoCrMoNbTi refractory high-entropy alloy powders milled for the different times

    图  2  不同球磨时间CoCrMoNbTi难熔高熵合金粉末显微形貌:(a)0 h;(b)5 h;(c)10 h;(d)20 h;(e)30 h;(f)40 h

    Figure  2.  SEM images of the CoCrMoNbTi refractory high-entropy alloy powders milled for the different times: (a) 0 h; (b) 5 h; (c) 10 h; (d) 20 h; (e)30 h; (f) 40 h

    图  3  球磨40 h的CoCrMoNbTi难熔高熵合金粉末形貌(a)及能谱点扫描图(b)

    Figure  3.  Morphology (a) and EDS point scan (b) of the CoCrMoNbTi refractory high-entropy alloy powders milled for 40 h

    图  4  球磨40 h的CoCrMoNbTi难熔高熵合金粉末形貌及能谱面扫描图:(a)显微形貌;(b)Mo;(c)Co;(d)Cr;(e)Nb;(f)Ti

    Figure  4.  SEM image and EDS maps of the CoCrMoNbTi refractory high-entropy alloy powders milled for 40 h: (a) SEM image; (b) Mo; (c) Co; (d) Cr; (e) Nb; (f) Ti

    图  5  CoCrMoNbTi难熔高熵合金涂层X射线衍射图谱

    Figure  5.  XRD images of the CoCrMoNbTi refractory high-entropy alloy coatings

    图  6  CoCrMoNbTi难熔高熵合金涂层宏观形貌((a)和(b))和背散射电子形貌((c)和(d))

    Figure  6.  Macro morphology ((a) and (b)) and the backscattered electron images ((c) and (d)) of the CoCrMoNbTi refractory high-entropy alloy coatings

    表  1  图3中不同位置的CoCrMoNbTi合金粉末能谱点扫描分析结果(原子分数)

    Table  1.   EDS point scanning analysis results at the different spots in Fig.3 of the CoCrMoNbTi alloy powders %

    元素 谱图1 谱图2 谱图3
    Ti 17.65 18.46 19.17
    Cr 19.44 22.99 19.72
    Co 19.59 19.81 20.58
    Nb 21.29 18.89 20.47
    Mo 22.03 19.84 20.07
    总量 100.00 100.00 100.00
    下载: 导出CSV
  • [1] Han C J, Fang Q H, Shi Y S, et al. Recent advances on high-entropy alloys for 3D printing. Adv Mater, 2020, 32(26): e1903855 doi: 10.1002/adma.201903855
    [2] Yang Y, He Q F. Lattice distortion in high-entropy alloys. Acta Metall Sinica, 2021, 57(4): 385

    杨勇, 赫全锋. 高熵合金中的晶格畸变. 金属学报, 2021, 57(4): 385
    [3] Maresca F, Curtin W A. Theory of screw dislocation strengthening in random BCC alloys from dilute to "High-Entropy" alloys. Acta Mater, 2020, 182: 144 doi: 10.1016/j.actamat.2019.10.007
    [4] Miao Z W, Zhu F W, Liu Q. Study on the microstructure and corrosion resistance of CoCrFeNiCuTi x high-entropy alloy. Powder Metall Technol, 2020, 38(1): 10

    苗振旺, 祝夫文, 刘琪. CoCrFeNiCuTi x 高熵合金的微观组织与耐腐蚀性能研究. 粉末冶金技术, 2020, 38(1): 10
    [5] Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys. Intermetallics, 2010, 18(9): 1758 doi: 10.1016/j.intermet.2010.05.014
    [6] Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater Des, 2018, 139: 498
    [7] Nie X W, Cai M D, Cai S. Microstructure and mechanical properties of a novel refractory high entropy alloy HfMoScTaZr. Int J Refract Met Hard Mater, 2021, 98: 105568 doi: 10.1016/j.ijrmhm.2021.105568
    [8] Huang Y, Wang Z, Xu Z, et al. Microstructure and properties of TiNbZrMo high entropy alloy coating. Mater Lett, 2021, 285: 129004 doi: 10.1016/j.matlet.2020.129004
    [9] Li Q, Zhang H, Li D, et al. W x NbMoTa refractory high-entropy alloys fabricated by laser cladding deposition. Materials, 2019, 12(3): 533 doi: 10.3390/ma12030533
    [10] Zhang G Y, Cha W S, Chen X L, et al. Application of mechanical ball milling technology in material preparation. Powder Metall Technol, 2018, 36(4): 315

    张桂银, 查五生, 陈秀丽, 等. 机械球磨技术在材料制备中的应用. 粉末冶金技术, 2018, 36(4): 315
    [11] Prica C V, Neamtu B V, Marinca T F, et al. Synthesis of Invar 36 type alloys from elemental and prealloyed powders by mechanical alloying. Powder Metall, 2019, 62(3): 155 doi: 10.1080/00325899.2019.1625509
    [12] Shivam V, Shadangi Y, Basu J, et al. Alloying behavior and thermal stability of mechanically alloyed nano AlCoCrFeNiTi high-entropy alloy. J Mater Res, 2019, 34(5): 787 doi: 10.1557/jmr.2019.5
    [13] Yudanto S D, Dewi Y P, Imaduddin A, et al. Improvement in the crystallographic phase content and superconducting properties of mechanically alloyed MgB2. J Supercond Novel Magn, 2019, 32: 2829 doi: 10.1007/s10948-019-5061-0
    [14] Shawon A K M A, Ur S C. Synthesis and thermoelectric property elucidation of mechanically alloyed and vacuum hot pressed single-phase AlSb. J Electron Mater, 2020, 49: 2762 doi: 10.1007/s11664-019-07726-1
    [15] Qi P B, Liang X B, Tong Y G, et al. Effect of milling time on the preparation of NbMoTaW high entropy alloy powder by mechanical alloying. Rare Met Mater Eng, 2019, 48(8): 2623

    漆陪部, 梁秀兵, 仝永刚, 等. 球磨时间对机械合金化制备NbMoTaW高熵合金粉末的影响. 稀有金属材料与工程, 2019, 48(8): 2623
    [16] Zhou Q, Wei S C, Yang S Z, et al. Preparation of FeCuNiSnCo powder by mechanical alloying and the research on physical properties of its matrix materials. Powder Metall Technol, 2019, 37(1): 30

    周强, 魏世超, 杨树忠, 等. 机械合金化FeCuNiSnCo粉末的制备及其胎体材料物理性能研究. 粉末冶金技术, 2019, 37(1): 30
    [17] Chen C L, Suprianto. Microstructure and mechanical properties of AlCuNiFeCr high entropy alloy coatings by mechanical alloying. Surf Coat Technol, 2020, 386(1): 12443
    [18] Zhu C, Li Z, Hong C, et al. Microstructure and mechanical properties of the TiZrNbMoTa refractory high-entropy alloy produced by mechanical alloying and spark plasma sintering. Int J Refract Met Hard Mater, 2020, 93: 105357 doi: 10.1016/j.ijrmhm.2020.105357
    [19] Zhang M, Zhou X, Li J. Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy. J Mater Eng Perform, 2017, 26: 3657 doi: 10.1007/s11665-017-2799-z
    [20] Zhang M, Zhou X, Zhu W, et al. Influence of annealing on microstructure and mechanical properties of refractory CoCrMoNbTi0.4 high-entropy alloy. Metall Mater Trans A, 2018, 49: 1313 doi: 10.1007/s11661-018-4472-z
    [21] Peng H Y, Kang Z X, Li X Z, et al. Effects of milling time on the microstructure and properties of NbMoTaWVCr refractory high entropy alloy. Powder Metall Mater Sci Eng, 2020, 25(6): 513

    彭海燕, 康志新, 李小珍, 等. 球磨时间对NbMoTaWVCr难熔高熵合金组织与性能的影响. 粉末冶金材料科学与工程, 2020, 25(6): 513
    [22] An X L, Liu Q B, Zheng B. Microstructure and properties of laser cladding high entropy alloy MoFeCrTiWAl x Si y coating. Infrared Laser Eng, 2014, 43(4): 1140

    安旭龙, 刘其斌, 郑波. 激光熔覆制备高熵合金MoFeCrTiWAl x Si y 涂层的组织与性能. 红外与激光工程, 2014, 43(4): 1140
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  2130
  • HTML全文浏览量:  160
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-12
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回