Al–5Ti–1B合金显微组织与细化机理

李洋 郭绪强 许磊 历长云 刘孝飞

李洋, 郭绪强, 许磊, 历长云, 刘孝飞. Al–5Ti–1B合金显微组织与细化机理[J]. 粉末冶金技术, 2022, 40(3): 251-257. doi: 10.19591/j.cnki.cn11-1974/tf.2021090002
引用本文: 李洋, 郭绪强, 许磊, 历长云, 刘孝飞. Al–5Ti–1B合金显微组织与细化机理[J]. 粉末冶金技术, 2022, 40(3): 251-257. doi: 10.19591/j.cnki.cn11-1974/tf.2021090002
LI Yang, GUO Xu-qiang, XU Lei, LI Chang-yun, LIU Xiao-fei. Microstructure and refinement mechanism of Al–5Ti–1B alloys[J]. Powder Metallurgy Technology, 2022, 40(3): 251-257. doi: 10.19591/j.cnki.cn11-1974/tf.2021090002
Citation: LI Yang, GUO Xu-qiang, XU Lei, LI Chang-yun, LIU Xiao-fei. Microstructure and refinement mechanism of Al–5Ti–1B alloys[J]. Powder Metallurgy Technology, 2022, 40(3): 251-257. doi: 10.19591/j.cnki.cn11-1974/tf.2021090002

Al–5Ti–1B合金显微组织与细化机理

doi: 10.19591/j.cnki.cn11-1974/tf.2021090002
基金项目: 新疆维吾尔自治区自然科学基金资助项目(2021D01A198)
详细信息
    通讯作者:

    E-mail: liuxiaofei0501@163.com

  • 中图分类号: TG142.71

Microstructure and refinement mechanism of Al–5Ti–1B alloys

More Information
  • 摘要: 采用粉末混合+热挤压和粉末混合+气雾化+热挤压两种工艺制备了Al–5Ti–1B合金杆,研究了两种工艺制备Al–5Ti–1B合金的显微组织,并进行了晶粒细化性能评定。结果表明:两种制备工艺均可以使TiB2粒子均匀分布,并抑制TiAl3相的长大。在7050铝合金熔体中分别添加质量分数为0.2%的两种工艺制备的Al–5Ti–1B合金,添加粉末混合+热挤压工艺制备的Al–5Ti–1B合金后,7050铝合金晶粒细化效果不明显,铝合金晶粒尺寸仍达1400 μm;添加粉末混合+气雾化+热挤压工艺制备的Al–5Ti–1B合金后,7050铝合金晶粒细化效果非常好,铝合金平均晶粒尺寸仅有176 μm。根据此实验现象,对Al–5Ti–1B合金晶粒细化双重形核机理提出新的解释。
  • 图  1  Al–5Ti–1B气雾化合金粉显微形貌

    Figure  1.  SEM images of the gas atomized Al–5Ti–1B alloy powders

    图  2  Al–5Ti–1B气雾化合金粉粒度分布

    Figure  2.  Size distribution of the gas atomized Al–5Ti–1B alloy powders

    图  3  Al–5Ti–1B合金X射线衍射图谱:(a)1#样品;(b)2#样品

    Figure  3.  XRD patterns of the Al–5Ti–1B alloys: (a) sample 1#; (b) sample 2#

    图  4  Al–5Ti–1B合金显微组织:(a)、(b)1#样品;(c)、(d)2#样品

    Figure  4.  Microstructures of the Al–5Ti–1B alloys: (a), (b) sample 1#; (c), (d) sample 2#

    图  5  未添加细化剂的7050铝合金铸态组织

    Figure  5.  As-cast microstructure of the 7050 aluminum alloys without refiner

    图  6  添加不同细化剂后7050铝合金铸态组织:(a)1# Al–5Ti–1B细化剂;(b)2# Al–5Ti–1B细化剂

    Figure  6.  As-cast microstructures of the 7050 aluminum alloys add by the different refiners: (a) 1# Al–5Ti–1B; (b) 2# Al–5Ti–1B

    图  7  双重形核理论示意图

    Figure  7.  Schematic diagram of the double nucleation mechanism

    图  8  新双重形核理论细化机制示意图

    Figure  8.  Schematic diagram of the new double nucleation refinement mechanism

    表  1  Al–5Ti–2B合金样品的原材料和工艺路线

    Table  1.   Raw materials and the process route of the Al–5Ti–2B alloy samples

    样品原材料工艺路线
    1#Al粉,Ti粉,TiB2混合–热挤压
    2#Al粉,Ti粉,TiB2混合–真空气雾化–热挤压
    下载: 导出CSV

    表  2  Al–5Ti–1B合金化学成分

    Table  2.   Chemical composition of the Al–5Ti–1B alloys (×10−6)

    样品TiBZrSiFe
    1#49716.39889.71261.8959.5966.9
    2#50716.310269.5918.8608.21480.4
    下载: 导出CSV
  • [1] Ma S G, Xiong H, Wang Z T. Review and outlook of output of aluminum product and grain refiner requirement in the world. Light Alloy Fab Technol, 2011, 39(10): 1 doi: 10.3969/j.issn.1007-7235.2011.10.001

    马世光, 熊慧, 王祝堂. 回顾与展望全球铝产品产量及对晶粒细化剂的需求. 轻合金加工技术, 2011, 39(10): 1 doi: 10.3969/j.issn.1007-7235.2011.10.001
    [2] Yan J M, Li P, Zuo X Q, et al. Research progress of Al–Ti–B grain refiner: mechanism analysis and second phases controlling. Mater Rep, 2020, 34(5): 152

    闫敬明, 黎平, 左孝青, 等. Al–Ti–B晶粒细化剂研究进展: 细化机理及第二相控制. 材料导报, 2020, 34(5): 152
    [3] Zhong H Y, Yuan F S. Production method and development trend of the Al–Ti–B master alloy. Nonferrous Met Mater Eng, 2016, 37(5): 243

    钟海燕, 袁孚胜. Al–Ti–B中间合金生产方法及发展趋势. 有色金属材料与工程, 2016, 37(5): 243
    [4] Chen Y J, Xu Q Y, Huang T Y. Development of research on grain refiners for aluminum alloys. Mater Rev, 2006, 20(12): 57 doi: 10.3321/j.issn:1005-023X.2006.12.016

    陈亚军, 许庆彦, 黄天佑. 铝合金晶粒细化剂研究进展. 材料导报, 2006, 20(12): 57 doi: 10.3321/j.issn:1005-023X.2006.12.016
    [5] Li R X, Zhang W H, Zhang P, et al. Effect of electromagnetic stirring on the microstructure and refinement of Al–5Ti–B master alloy. Foundry, 2016, 65(1): 1 doi: 10.3969/j.issn.1001-4977.2016.01.001

    李润霞, 张文华, 张鹏, 等. 电磁搅拌对Al–5Ti–B中间合金组织及细化效果的影响. 铸造, 2016, 65(1): 1 doi: 10.3969/j.issn.1001-4977.2016.01.001
    [6] Wang S C, Zheng K H, Qi W J, et al. Effect of electromagnetic stirring on microstructure and grain refining efficiency of Al–5Ti–1B grain refiner. Nonferrous Met Sci Eng, 2014, 5(1): 58

    王顺成, 郑开宏, 戚文军, 等. 电磁搅拌对Al–5Ti–1B的显微组织与晶粒细化能力的影响. 有色金属科学与工程, 2014, 5(1): 58
    [7] Dong T S, Cui C X, Liu S J, et al. Study on the rapid solidification and refining mechanism of Al–Ti–B refiner. Rare Met Mater Eng, 2008, 37(1): 29 doi: 10.3321/j.issn:1002-185X.2008.01.007

    董天顺, 崔春翔, 刘双进, 等. Al–Ti–B细化剂的快速凝固及其细化机理研究. 稀有金属材料与工程, 2008, 37(1): 29 doi: 10.3321/j.issn:1002-185X.2008.01.007
    [8] Ghadimi H, Hossein N S, Eghbali B. Enhanced grain refinement of cast aluminum alloy by thermal and mechanical treatment of Al–5Ti–B master alloy. Trans Nonferrous Met Soc China, 2013, 23: 1563 doi: 10.1016/S1003-6326(13)62631-X
    [9] Wang S C, Kang Y H, Zhou N, et al. Microstructure and grain refining performance of Al–5Ti–1B alloy prepared by powder compaction. Chin J Nonferrous Met, 2019, 29(8): 1583 doi: 10.1016/S1003-6326(19)65065-X

    王顺成, 康跃华, 周楠, 等. 粉末压制Al–5Ti–1B合金的显微组织与晶粒细化性能. 中国有色金属学报, 2019, 29(8): 1583 doi: 10.1016/S1003-6326(19)65065-X
    [10] Liu Y, You Q S, Zhu H M, et al. Preparation of new high hardness martensitic iron-based alloy powders by electrode induction gas atomization. Powder Metall Technol, 2021, 39(6): 537

    刘艳, 尤齐燊, 朱红梅, 等. 电极感应气雾化法制备新型高硬度马氏体铁基合金粉末. 粉末冶金技术, 2021, 39(6): 537
    [11] Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004

    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004
    [12] Wang C Y, Chang Y, Zhang L H, et al. Effect of ZrO2 content on microstructure and properties of molybdenum alloys. Powder Metall Technol, 2021, 39(5): 429

    王承阳, 常洋, 张林海, 等. 氧化锆含量对钼合金组织和性能的影响. 粉末冶金技术, 2021, 39(5): 429
    [13] Wu M M, Li L P, Gao X Q, et al. Research progress of molybdenum-based composites prepared by powder metallurgy technology. Powder Metall Technol, 2021, 39(5): 462

    吴明明, 李来平, 高选乔, 等. 粉末冶金技术制备钼基复合材料研究进展. 粉末冶金技术, 2021, 39(5): 462
    [14] Gao Z S. Test method for grain refiners of aluminum alloys. Light Met, 1999(4): 52

    高泽生. 铝合金晶粒细化剂的试验方法(2). 轻金属, 1999(4): 52
    [15] He S W, Liu Y, Guo S. Cooling rate calculation of non-equilibrium aluminum alloy powders prepared by gas atomization. Rare Met Mater Eng, 2009, 38(Suppl 1), 353
    [16] Ministry of Industry and Information Technology, People’s Republic of China. YST 447.1-2011 Alloy Wires Used for the Grain Refiner for Aluminium and Aluminium Alloys — Part 1: AlTiB Wires. Beijing: Standards Press of China, 2011

    中华人民共和国工业和信息化部. YST 447.1-2011铝及铝合金晶粒细化用合金线材, 第1部分: 铝–钛–硼合金线材. 北京: 中国标准出版社, 2011
    [17] Qi W J, Wang S C, Chen X M, et al. Effective nucleation phase and grain refinement mechanism of Al–5Ti–1B master alloy. Chin J Rare Met, 2013, 37(2): 179 doi: 10.3969/j.issn.0258-7076.2013.02.002

    戚文军, 王顺成, 陈学敏, 等. Al–5Ti–1B合金的有效形核相与晶粒细化机制. 稀有金属, 2013, 37(2): 179 doi: 10.3969/j.issn.0258-7076.2013.02.002
    [18] Fan Z, Wang Y, Zhang Y, et al. Grain refining mechanism in the Al/Al–Ti–B system. Acta Mater, 2015, 84: 292 doi: 10.1016/j.actamat.2014.10.055
    [19] Limmaneevichitr C, Eidhed W. Fading mechanism of grain refinement of aluminum-silicon alloy with Al–Ti–B grain refiners. Mater Sci Eng, 2003, 349: 197 doi: 10.1016/S0921-5093(02)00751-7
    [20] Xue X G, Gu J C, Yan Z W. Study progress and new trends for Al–Ti–B grain refining mechanism. Alum Fab, 2004(1): 43 doi: 10.3969/j.issn.1005-4898.2004.01.002

    薛希国, 谷吉存, 闫振武. 铝钛硼晶粒细化剂机理研究的进展及最新动向. 铝加工, 2004(1): 43 doi: 10.3969/j.issn.1005-4898.2004.01.002
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  551
  • HTML全文浏览量:  134
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-03
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回