选区激光熔化316L/430双相不锈钢组织和性能

胡建斌 刘晓静 王智勇 尚峰 贺毅强 杨建明

胡建斌, 刘晓静, 王智勇, 尚峰, 贺毅强, 杨建明. 选区激光熔化316L/430双相不锈钢组织和性能[J]. 粉末冶金技术, 2023, 41(4): 302-306. doi: 10.19591/j.cnki.cn11-1974/tf.2021090007
引用本文: 胡建斌, 刘晓静, 王智勇, 尚峰, 贺毅强, 杨建明. 选区激光熔化316L/430双相不锈钢组织和性能[J]. 粉末冶金技术, 2023, 41(4): 302-306. doi: 10.19591/j.cnki.cn11-1974/tf.2021090007
HU Jianbin, LIU Xiaojing, WANG Zhiyong, SHANG Feng, HE Yiqiang, YANG Jianming. Microstructure and properties of 316L/430 duplex stainless steels processed by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(4): 302-306. doi: 10.19591/j.cnki.cn11-1974/tf.2021090007
Citation: HU Jianbin, LIU Xiaojing, WANG Zhiyong, SHANG Feng, HE Yiqiang, YANG Jianming. Microstructure and properties of 316L/430 duplex stainless steels processed by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(4): 302-306. doi: 10.19591/j.cnki.cn11-1974/tf.2021090007

选区激光熔化316L/430双相不锈钢组织和性能

doi: 10.19591/j.cnki.cn11-1974/tf.2021090007
基金项目: 江苏省自然科学基金资助项目(BK20201467);江苏省“333高层次人才培养工程”科研资助项目(BRA2020260);江苏省六大人才高峰项目(JXQC-058);江苏海洋大学委托培养博士科研基金项目;连云港市重点研发计划项目(CG2229)
详细信息
    通讯作者:

    E-mail: shangfeng@jou.edu.cn

  • 中图分类号: TG142.1

Microstructure and properties of 316L/430 duplex stainless steels processed by selective laser melting

More Information
  • 摘要: 以气雾化316L和430混合粉末为原料,采用选区激光熔化工艺制备了316L/430双相不锈钢。利用光学显微镜、电子材料试验机、电化学工作站研究了选区激光熔化双相不锈钢固溶处理前后的显微组织、力学性能和耐腐蚀性能。结果表明:当固溶温度为1250 ℃时,铁素体与奥氏体两相面积比为45.7:54.3,此时试样的力学性能较好,抗拉强度830 MPa,屈服强度340 MPa,硬度HV 356,断后伸长率25%;当固溶温度为1150 ℃时,试样的耐腐蚀性能较好,自腐蚀电流密度为3.196×10−6 A·cm−2,点蚀电位为−0.118 V。
  • 图  1  316L/430双相不锈钢混合粉末粒度分布

    Figure  1.  Particle size distribution of the 316L/430 duplex stainless steel powders

    图  2  选区激光熔化扫描策略

    Figure  2.  Scanning strategy of SLM

    图  3  JMatPro软件模拟的双相不锈钢相图

    Figure  3.  Phase diagram of the duplex stainless steels stimulated by JMatPro

    图  4  拉伸试样尺寸(单位:mm)

    Figure  4.  Size of the tensile test specimens (unit: mm)

    图  5  不同加工工艺试样的金相组织:(a)DY;(b)1150GR;(c)1250GR;(d)1350GR

    Figure  5.  Metallographic structures of the specimens prepared by the different processes: (a) DY; (b) 1150GR; (c) 1250GR; (d) 1350GR

    图  6  试样应力–应变曲线

    Figure  6.  Stress-strain image of the tensile test specimens

    图  7  双相不锈钢固溶处理前后动电位极化曲线

    Figure  7.  Potentio-dynamic polarization curves of the 50A specimens before and after solution treatment

    表  1  双相不锈钢粉末的化学成分(质量分数)

    Table  1.   Chemical composition of the 316L/430 duplex stainless steel powders %

    CrNiMnMoCSiFe
    17.006.001.501.250.060.50余量
    下载: 导出CSV

    表  2  打印态和固溶态试样铁素体与奥氏体两相面积比

    Table  2.   Area ratio of ferrite and austenite for the printing state and the solution treatment specimens

    试样α:γ(面积比)
    DY99.0:1.0
    950GR13.5:86.5
    1000GR14.6:85.4
    1050GR13.7:86.3
    1100GR12.0:88.0
    1150GR23.9:76.1
    1200GR31.2:68.8
    1250GR45.7:54.3
    1300GR60.4:39.6
    1350GR80.7:19.3
    下载: 导出CSV

    表  3  不同工艺试样力学性能比较

    Table  3.   Mechanical properties of the specimens prepared by the different processes

    材料 抗拉强度 / MPa 屈服强度 / MPa 硬度,HV 断后伸长率 / %
    MIM–316L ≥517 ≥172 ≥120 ≥50
    SLM–316L–1050GR[14] 673 420 48
    MIM–316L:430–1250GR[15] 756
    3RE60 ≥590 ≥390 ≤300 ≥20
    50A–DY 924±5 843±4 335±6 22±1.0
    50A–1150GR 994±18 444±6 320±4 16±1.5
    50A–1250GR 830±14 340±6 356±7 25±3.0
    50A–1350GR 598±8 375±56 253±13 21±3.0
    下载: 导出CSV

    表  4  双相不锈钢固溶处理前后电化学试验结果

    Table  4.   Parameters of the 50A specimens before and after solution treatment in the potentio-dynamic polarization curves

    试样E / VSCEI / AEp / VSCE
    DY−0.4026.983×10−6−0.595
    1150GR−0.4333.196×10−6−0.118
    1250GR−0.4606.145×10−6−0.195
    1350GR−0.4637.896×10−6−0.221
    下载: 导出CSV
  • [1] Chail G, Kangas P. Super and hyper duplex stainless steels: structures, properties and applications. Procedia Struct Integr, 2016, 2: 1755 doi: 10.1016/j.prostr.2016.06.221
    [2] Martín F, García C, Blanco Y, et al. Influence of sinter-cooling rate on the mechanical properties of powder metallurgy austenitic, ferritic, and duplex stainless steels sintered in vacuum. Mater Sci Eng A, 2015, 642: 360 doi: 10.1016/j.msea.2015.06.097
    [3] Davidson K P, Singamneni S B. Magnetic characterization of selective laser-melted S32750 duplex stainless steel. JOM, 2017, 69(3): 569 doi: 10.1007/s11837-016-2193-6
    [4] Davidson K P, Singamneni S B. Selective laser melting of duplex stainless steel powders: An investigation. Mater Manuf Processes, 2016, 31(12): 1543 doi: 10.1080/10426914.2015.1090605
    [5] Davidson K P, Singamneni S B. Metallographic evaluation of duplex stainless steel powders processed by selective laser melting. Rapid Prototyp J, 2017, 23(6): 1146 doi: 10.1108/RPJ-04-2016-0053
    [6] Hengsbach F, Koppa P, Duschik K, et al. Duplex stainless steel fabricated by selective laser melting-microstructural and mechanical properties. Mater Des, 2017, 133: 136 doi: 10.1016/j.matdes.2017.07.046
    [7] Saeidi K, Kevetkova L, Lofaj F, et al. Novel ferritic stainless steel formed by laser melting from duplex stainless steel powder with advanced mechanical properties and high ductility. Mater Sci Eng A, 2016, 665: 59 doi: 10.1016/j.msea.2016.04.027
    [8] Shang F, Chen X Q, Zhang P, et al. Novel ferritic stainless steel with advanced mechanical properties and significant magnetic responses processed by selective laser melting. Mater Trans, 2019, 60(6): 1096 doi: 10.2320/matertrans.M2018374
    [9] Shang F, Chen X Q, Wang Z Y, et al. The microstructure, mechanical properties, and corrosion resistance of UNS S32707 hyper-duplex stainless steel processed by selective laser melting. Metals, 2019, 9(9): 1012 doi: 10.3390/met9091012
    [10] Sotomayor M E, Cervera A, Varez A, et al. Duplex stainless steel self-ligating orthodontic brackets by micro-powder injection moulding. Int J Eng Res, 2016, 2(4): 184
    [11] Sotomayor M E, Kloe R D, Levenfeld B, et al. Microstructural study of duplex stainless steels obtained by powder injection molding. J Alloys Compd, 2014, 589(4): 314
    [12] Shulga A V. A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies. J Nucl Mater, 2013, 434(1-3): 133 doi: 10.1016/j.jnucmat.2012.11.008
    [13] Yang T, Zheng J M, Liu X G, et al. Influence of sintering temperature on microstructure and properties of 420 stainless steel PM sintered body. Powder Metall Technol, 2016, 34(5): 373 doi: 10.3969/j.issn.1001-3784.2016.05.010

    杨霆, 郑军妹, 刘晓刚, 等. 烧结温度对420不锈钢组织和性能的影响. 粉末冶金技术, 2016, 34(5): 373 doi: 10.3969/j.issn.1001-3784.2016.05.010
    [14] Zhang R Q, Fan L, Zhou B G, et al. Microstructure and properties of selective laser melted 316L stainless steel in different directions. Heat Treat Met, 2020, 45(9): 161 doi: 10.13251/j.issn.0254-6051.2020.09.030

    张仁奇, 樊磊, 周宝刚, 等. 选区激光熔化316L不锈钢的各向组织与性能. 金属热处理, 2020, 45(9): 161 doi: 10.13251/j.issn.0254-6051.2020.09.030
    [15] Sotomayor M E, Levenfeld B, Varez A. Powder injection moulding of premixed ferritic and austenitic stainless steel powders. Mater Sci Eng A, 2011, 528(9): 3480 doi: 10.1016/j.msea.2011.01.038
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  392
  • HTML全文浏览量:  73
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 刊出日期:  2023-08-29

目录

    /

    返回文章
    返回