微波烧结制备钨锇混合基扩散阴极及其发射性能

刘伟 胡志凯 李世磊 周帆 杨韵斐 张小可 谢元峰 王金淑

刘伟, 胡志凯, 李世磊, 周帆, 杨韵斐, 张小可, 谢元峰, 王金淑. 微波烧结制备钨锇混合基扩散阴极及其发射性能[J]. 粉末冶金技术, 2023, 41(3): 199-209. doi: 10.19591/j.cnki.cn11-1974/tf.2021090011
引用本文: 刘伟, 胡志凯, 李世磊, 周帆, 杨韵斐, 张小可, 谢元峰, 王金淑. 微波烧结制备钨锇混合基扩散阴极及其发射性能[J]. 粉末冶金技术, 2023, 41(3): 199-209. doi: 10.19591/j.cnki.cn11-1974/tf.2021090011
LIU Wei, HU Zhikai, LI Shilei, ZHOU Fan, YANG Yunfei, ZHANG Xiaoke, XIE Yuanfeng, WANG Jinshu. Preparation and emission performance of tungsten-osmium mixed matrix dispenser cathode by microwave sintering[J]. Powder Metallurgy Technology, 2023, 41(3): 199-209. doi: 10.19591/j.cnki.cn11-1974/tf.2021090011
Citation: LIU Wei, HU Zhikai, LI Shilei, ZHOU Fan, YANG Yunfei, ZHANG Xiaoke, XIE Yuanfeng, WANG Jinshu. Preparation and emission performance of tungsten-osmium mixed matrix dispenser cathode by microwave sintering[J]. Powder Metallurgy Technology, 2023, 41(3): 199-209. doi: 10.19591/j.cnki.cn11-1974/tf.2021090011

微波烧结制备钨锇混合基扩散阴极及其发射性能

doi: 10.19591/j.cnki.cn11-1974/tf.2021090011
详细信息
    通讯作者:

    E-mail: wangjsh@bjut.edu.cn

  • 中图分类号: TF124

Preparation and emission performance of tungsten-osmium mixed matrix dispenser cathode by microwave sintering

More Information
  • 摘要: 采用固–液混合法制备出不同锇(Os)含量(原子数分数)的亚微米级钨锇混合粉体,通过微波烧结获得了孔道结构均匀的钨锇混合基扩散型阴极。电子发射测试结果表明,元素Os的加入使浸渍型钨基阴极的发射性能有明显提高。对比不同锇含量的混合基阴极,发现W–25Os阴极(Os原子数分数为25%)具有相对较低的逸出功和较高的发射电流密度,其在1100 ℃时脉冲发射电流密度为42.86 A·cm−2,斜率为1.40,发射电流密度是同等工作条件下传统钡钨阴极的1.7倍,达到了覆膜M型阴极的电子发射水平。W–25Os混合基阴极的有效逸出功最低为1.93 eV,有利于活性自由钡(Ba)的生成,表层元素摩尔比Ba:(W+Os)为0.83:1.00,比传统钡钨阴极中Ba:W(约为0.50:1.00)摩尔比有了明显提高。
  • 图  1  氢气还原W–Os混合粉末X射线衍射图谱

    Figure  1.  XRD patterns of the W–Os mixed powders after hydrogen reduction

    图  2  原始Os粉、氢气还原W粉末及W–Os混合粉末的扫描电子显微形貌:(a)原始Os粉;(b)氢气还原W粉;(c)W–15Os;(d)W–25Os;(e)W–50Os;(f)W–75Os

    Figure  2.  SEM images of the original Os powders, the hydrogen reduced W powders, and the W–Os mixed powders: (a) original Os powders; (b) hydrogen reduced W powders; (c) W–15Os; (d) W–25Os; (e) W–50Os; (f) W–75Os

    图  3  原始Os粉、氢气还原W粉末和W–Os混合粉末的粒度分布曲线:(a)原始Os粉;(b)氢气还原W粉;(c)W–15Os;(d)W–25Os;(e)W–50Os;(f)W–75Os

    Figure  3.  Particle size distribution curves of the original Os powders, the hydrogen reduced W powders, and the W–Os mixed powders: (a) original Os powders; (b) hydrogen reduced W powders; (c) W–15Os; (d) W–25Os; (e) W–50Os; (f) W–75Os

    图  4  W–25Os粉末能谱面扫图

    Figure  4.  EDS mapping images of the W–25Os mixed powders

    图  5  不同温度微波烧结的W–25Os基体表面扫描电子显微形貌:(a)1450 ℃;(b)1500 ℃;(c)1550 ℃;(d)1600 ℃

    Figure  5.  SEM images of the W–25Os mixed matrix surfaces sintered by microwave sintering: (a) 1450 ℃; (b) 1500 ℃; (c) 1550 ℃; (d) 1600 ℃

    图  6  微波烧结W–25Os基体断面扫描电子显微形貌(a)~(c)及能谱面扫图(d)~(f)

    Figure  6.  SEM ((a)~(c)) and EDS mapping images ((d)~(f)) of the W–25Os mixed matrix in the cross section after microwave sintering

    图  7  W–Os混合基体X射线衍射图谱

    Figure  7.  XRD patterns of the W–Os mixed matrix with the different osmium concentrations

    图  8  W–Os混合基阴极表面扫描电子显微形貌:(a)W–15Os;(b)W–25Os;(c)W–50Os;(d)W–75Os;(e)Ba–W

    Figure  8.  SEM images of the W–Os mixed matrix dispenser cathodes with the different osmium concentrations: (a) W–15Os; (b) W–25Os; (c) W–50Os; (d) W–75Os; (e) Ba–W

    图  9  W–25Os混合基阴极能谱面扫图

    Figure  9.  EDS mapping images of the W–25Os mixed matrix dispenser cathode

    图  10  W–Os混合基阴极与钡钨阴极脉冲发射曲线和逸出功曲线:(a)W–15Os;(b)W–25Os;(c)W–50Os;(d)W–75Os;(e)Ba–W

    Figure  10.  Pulsed emission curves and work function curves of the W–Os mixed matrix dispenser cathodes and the barium impregnated tungsten cathodes: (a) W–15Os; (b) W–25Os; (c) W–50Os; (d) W–75Os; (e) Ba–W

    图  11  W–25Os混合基阴极表面活性元素X射线光电子能谱图:(a)W4f;(b)Os4f;(c)O1s;(d)Ba3d

    Figure  11.  Surface active element XPS spectra of the W–25Os mixed matrix dispenser cathodes: (a) W4f; (b) Os4f; (c) O1s; (d) Ba3d

    图  12  浸渍411活性盐Ba–W(a)和W–25Os阴极(b)充分激活后表面俄歇谱图

    Figure  12.  AES spectra of the activated Ba–W (a) and W–25Os dispenser cathodes (b) impregnated with 411 salt

    表  1  W–Os混合基阴极与Ba‒W阴极逸出功

    Table  1.   Work functions of the W–Os mixed matrix dispenser cathodes and the barium impregnated tungsten cathodes

    阴极编号功函数 / eV
    W–15Os1.97
    W–25Os1.93
    W–50Os1.96
    W–75Os1.94
    Ba–W2.03
    下载: 导出CSV
  • [1] Zhang Z T. Development trend and future of microwave vacuum electron devices. Vac Electron, 2019(3): 1

    张兆镗. 真空微波电子器件的发展态势与前途. 真空电子技术, 2019(3): 1
    [2] Ding Y G, Liu P K, Zhang Z C, et al. The state art and development of vacuum electronics and microwave vacuum electron devices. J Microwaves, 2010, 26(Suppl 1): 397

    丁耀根, 刘濮鲲, 张兆传, 等. 真空电子学和微波真空电子器件的发展和技术现状. 微波学报, 2010, 26(增刊 1): 397
    [3] Yang M, Liu C, Zheng X. A study on the application of high power and high frequency microwave vacuum devices in radar detection system. Mod Radar, 2017, 39(4): 83

    杨明, 刘超, 郑新. 大功率、高频段电真空器件在雷达技术领域的应用分析. 现代雷达, 2017, 39(4): 83
    [4] McChesney R W. Lee de Forest and the fatherhood of radio. J Am Hist, 1994, 81(1): 310
    [5] Gao J Y, Yang Y F, Zhang X K, et al. A review on recent progress of thermionic cathode. Tungsten, 2020, 2(3): 289 doi: 10.1007/s42864-020-00059-1
    [6] Longo R T, Adler E A, Falce L R. Dispenser cathode life prediction model // International Electron Devices Meeting. San Francisco, 1984: 318
    [7] Cheng C, Yu Z Q. Evaporation of osmium-coated dispenser cathode. Vac Electron, 2014(4): 5

    程诚, 于志强. 覆锇阴极的蒸发. 真空电子技术, 2014(4): 5
    [8] Zalm P, Van Stratum A J A. Osmium dispenser cathodes. Philips Tech Rev, 1966, 27(3-4): 69
    [9] Brion D, Tonnerre J C, Shroff A. Electron emission and surface composition of osmium and osmium-tungsten coated dispenser cathodes. Appl Surf Sci, 1985, 20: 429 doi: 10.1016/0378-5963(85)90166-7
    [10] Green M C. The M-type cathode—no longer magic? // 1980 International Electron Devices Meeting. Washington, 1980: 471
    [11] Ares Fang C S, Maloney C E. Surface studies of Os/Re/W alloy-coated impregnated tungsten cathodes. J Vac Sci Technol A, 1990, 8(3): 2329 doi: 10.1116/1.576758
    [12] Makarov A P, Kultashev O K. A work model for barium dispenser cathodes with the surface covered by metal Os, Ir or Os (Ir) W alloy layer. Appl Surf Sci, 1997, 111: 56 doi: 10.1016/S0169-4332(96)00764-7
    [13] Goldwater D L, Danforth W E. Thorium dispenser cathodes. J Franklin Inst, 1956, 262(3): 229
    [14] Isagawa S, Higuchi T, Kobayashi K, et al. Application of M-type cathodes to high-power cw klystrons. Appl Surf Sci, 1999, 146(1): 89
    [15] Jenkins R O. A review of thermionic cathodes. Vacuum, 1969, 19(8): 353 doi: 10.1016/S0042-207X(69)80077-1
    [16] Zhang H L, Liu Y W, Zhang M C, et al. Emission and surface characteristic of ternary alloy Ir/Re/W-coated impregnated tungsten cathodes. Appl Surf Sci, 2005, 251(1-4): 130 doi: 10.1016/j.apsusc.2005.03.162
    [17] Zhang H W, Wu H X, He Z C. Emission performance studies of novel tri-mixed barium-tungsten cathode. Chin J Electron Dev, 2007, 30(1): 57

    张红卫, 吴华夏, 贺兆昌. 新型三元混合基钡钨阴极的发射性能研究. 电子器件, 2007, 30(1): 57
    [18] Zhang H W, Wu H X, He Z C. Emission performance studies of novel dual mixed barium-tungsten cathode. Chin J Electron Dev, 2006, 29(2): 308

    张红卫, 吴华夏, 贺兆昌. 新型二元混合基钡钨阴极的发射性能研究. 电子器件, 2006, 29(2): 308
    [19] Lai C, Wang J S, Zhou F, et al. Preparation and surface characteristics of Re3W matrix scandate cathode: An experimental and theoretical study. Appl Surf Sci, 2018, 440: 763 doi: 10.1016/j.apsusc.2018.01.169
    [20] Lai C, Wang J S, Zhou F, et al. Thermal electron emission properties of novel W–Re mixed matrix cathodes. Rare Met Mater Eng, 2016, 45(7): 1871

    赖陈, 王金淑, 周帆, 等. 新型钨铼混合基阴极的热电子发射性能. 稀有金属材料与工程, 2016, 45(7): 1871
    [21] Liu W, Li J H, Wang J S, et al. Preparation of scandium dispenser cathode by microwave sintering and it’ s electron emission property. Rare Met Mater Eng, 2020, 49(5): 1766

    刘伟, 李俊辉, 王金淑, 等. 微波烧结法制备含钪扩散阴极及其发射性能研究. 稀有金属材料与工程, 2020, 49(5): 1766
    [22] Roy R, Agrawal D, Cheng J P, et al. Full sintering of powdered-metal bodies in a microwave field. Nature, 1999, 399: 668 doi: 10.1038/21390
    [23] Chhillar P, Agrawal D, Adair J H. Sintering of molybdenum metal powder using microwave energy. Powder Metall, 2008, 51(2): 182 doi: 10.1179/174329007X178001
    [24] Liu W, Li S L, Zhou F, et al. Process and kinetic analysis of osmium prepared by microwave sintering. Powder Metall Technol, 2021, 39(5): 394

    刘伟, 李世磊, 周帆, 等. 微波烧结锇的工艺研究及动力学分析. 粉末冶金技术, 2021, 39(5): 394
    [25] Yin S Y, Ren F, Lu Z P, et al. Study on electron emission phenomenon of the surface micro area of coated impregnated dispenser cathode. J Electron Inf Technol, 2018, 40(10): 2535

    阴生毅, 任峰, 卢志鹏, 等. 覆膜浸渍扩散阴极表面微区电子发射像研究. 电子与信息学报, 2018, 40(10): 2535
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  721
  • HTML全文浏览量:  107
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 刊出日期:  2023-06-28

目录

    /

    返回文章
    返回