球磨工艺对医用Ti–Mg复合材料力学性能的影响

夏朋昭 许莹 蔡艳青 赵思坛 宋攀

夏朋昭, 许莹, 蔡艳青, 赵思坛, 宋攀. 球磨工艺对医用Ti–Mg复合材料力学性能的影响[J]. 粉末冶金技术, 2024, 42(2): 192-199. doi: 10.19591/j.cnki.cn11-1974/tf.2021090013
引用本文: 夏朋昭, 许莹, 蔡艳青, 赵思坛, 宋攀. 球磨工艺对医用Ti–Mg复合材料力学性能的影响[J]. 粉末冶金技术, 2024, 42(2): 192-199. doi: 10.19591/j.cnki.cn11-1974/tf.2021090013
XIA Pengzhao, XU Ying, CAI Yanqing, ZHAO Sitan, SONG Pan. Effect of ball milling process on mechanical properties of medical Ti–Mg composites[J]. Powder Metallurgy Technology, 2024, 42(2): 192-199. doi: 10.19591/j.cnki.cn11-1974/tf.2021090013
Citation: XIA Pengzhao, XU Ying, CAI Yanqing, ZHAO Sitan, SONG Pan. Effect of ball milling process on mechanical properties of medical Ti–Mg composites[J]. Powder Metallurgy Technology, 2024, 42(2): 192-199. doi: 10.19591/j.cnki.cn11-1974/tf.2021090013

球磨工艺对医用Ti–Mg复合材料力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021090013
详细信息
    通讯作者:

    E-mail: xuyingddddd@163.com

  • 中图分类号: TF123;TG146.2

Effect of ball milling process on mechanical properties of medical Ti–Mg composites

More Information
  • 摘要: 采用球磨+冷压制坯+微波加热烧结工艺制备Ti–15Mg复合材料,研究球磨工艺对Ti–15Mg混合粉末性能以及烧结后复合材料力学性能的影响。结果表明:以200 r·min−1球磨转速球磨8~10 h,随着球磨时间延长,混合粉末的平均粒径明显变小,粉末粒度分布逐渐集中在10~45 μm区间,粉末的球形度增加。在长时间球磨过程中,软质镁颗粒受到强烈撞击、研磨,引起表面破碎,钛颗粒出现了体积破碎和表面破碎,最终导致软质镁颗粒包裹脆性钛颗粒。球磨8 h后,混合粉末未出现明显的氧化,混合粉末中钛、镁粉末分布较为均匀,复合材料的力学性能较为优良,符合作为医用材料的力学性能要求。在低球磨转速下,球磨转速的提高不会导致粉末性能和烧结后复合材料性能出现明显变化。最佳球磨工艺参数为球磨时间8 h、球磨速度200 r·min−1,过程控制剂为正己烷。
  • 图  1  原料粉末和球磨不同时间后混合粉末的扫描电子显微形貌:(a)Mg;(b)Ti;(c)6 h;(d)8 h;(e)10 h

    Figure  1.  SEM images of the raw material powders and the mixed powders after ball milling for the different times: (a) Mg; (b) Ti; (c) 6 h; (d) 8 h; (e) 10 h

    图  2  不同球磨时间后混合粉末平均粒径

    Figure  2.  Average particle size of the mixed powders after different ball milling times

    图  3  不同球磨时间球磨后粉末粒径分布

    Figure  3.  Particle size distribution of the mixed powders after the different milling times

    图  4  不同球磨时间粉末压制成形的待烧结Ti–Mg坯体:(a)10 h;(b)8 h

    Figure  4.  Ti–Mg billets prepared by the mixed powders after ball milling for the different times: (a) 10 h; (b) 8 h

    图  5  球磨8 h的Ti–Mg混合粉末微观形貌及能谱分析:(a)微观形貌;(b)Ti;(c)Mg

    Figure  5.  SEM image and EDS analysis of the Ti–Mg powders after ball milling for 8 h: (a) SEM image; (b) Ti; (c) Mg

    图  6  球磨10 h的Ti–Mg粉末微观形貌及能谱分析:(a)微观形貌;(b)位置1能谱分析

    Figure  6.  Mixed Ti–Mg powders after ball milling for 10 h: (a) SEM image; (b) EDS analysis of location 1

    图  7  球磨不同时间后Ti–Mg粉末的X射线衍射图谱(a)及局部放大图(b)

    Figure  7.  XRD patterns (a) and local magnification (b) of the mixed Ti–Mg powders after ball milling for different times

    图  8  球磨过程中Ti–Mg混合粉末结构演变示意图

    Figure  8.  Structure evolution diagram of the Ti–Mg mixed powders during ball milling

    图  9  Ti–Mg混合粉末表面形貌图(a)和截面图(b)[15]

    Figure  9.  Morphology (a) and cross section (b) of the Ti–Mg mixed powders[15]

    图  10  不同球磨时间后磨罐壁上钛、镁粉体冷焊现象:(a)8 h;(b)10 h

    Figure  10.  Cold welding phenomenon of the Ti–Mg mixed powders on tank wall after ball milling for different times: (a) 8 h; (b) 10 h

    图  11  球磨时间对复合材料性能的影响

    Figure  11.  Influence of the ball milling time on the properties of the composite materials

    图  12  不同球磨转速球磨6 h后粉末粒径分布

    Figure  12.  Particle size distribution of the mixed powders after ball milling for 6 h with the different ball milling speeds

    图  13  不同球磨转速球磨6 h后混合粉末平均粒径

    Figure  13.  Average particle size of the mixed powders after ball milling for 6 h with the different ball milling speeds

    图  14  以100 r·min−1球磨转速球磨6 h后粉末微观形貌

    Figure  14.  SEM image of the mixed powders after ball milling for 6 h at 100 r·min−1

    图  15  不同球磨转速对复合材料性能的影响

    Figure  15.  Effect of the ball milling speed on the properties of the composite materials

    表  1  球磨过程中实验参数

    Table  1.   Experimental parameters during the ball milling

    球料比过程控制剂球磨时间 / h球磨转速 / (r·min−1)
    10:1正己烷6200
    8200
    10200
    6100
    下载: 导出CSV

    表  2  不同球磨时间下混合粉末的粉末收回率

    Table  2.   Powder recovery of the mixed powders under the different ball milling parameters

    球磨时间 / h球磨转速 / (r·min−1)粉末收回率 / %
    620094.13
    820085.38
    1020060.48
    下载: 导出CSV

    表  3  不同球磨转速球磨6 h后混合粉末的粉末收回率

    Table  3.   Powder recovery rate of the mixed powders after ball milling for 6 h with different ball milling speeds

    球磨转速 / (r·min−1)粉末收回率 / %
    20094.13
    10096.67
    下载: 导出CSV
  • [1] Liu J Q, Liu J, Tang Y J, et al. Research progress in titanium alloy in the field of orthopaedic implants. J Mater Eng, 2021, 49(8): 11 doi: 10.11868/j.issn.1001-4381.2020.000380

    刘剑桥, 刘佳, 唐毓金, 等. 钛合金在骨科植入领域的研究进展. 材料工程, 2021, 49(8): 11 doi: 10.11868/j.issn.1001-4381.2020.000380
    [2] Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials. Acta Metall Sinica, 2017, 53(10): 1238 doi: 10.11900/0412.1961.2017.00288

    于振涛, 余森, 程军, 等. 新型医用钛合金材料的研发和应用现状. 金属学报, 2017, 53(10): 1238 doi: 10.11900/0412.1961.2017.00288
    [3] Liu F, Zhou C K, Liu Y. Effect of milling process on properties of Ti/HA biomedical composites. Powder Metall Technol, 2005, 23(2): 116 doi: 10.3321/j.issn:1001-3784.2005.02.009

    刘芳, 周科朝, 刘咏. 原始粉料的球磨工艺对Ti/HA生物复合材料性能的影响. 粉末冶金技术, 2005, 23(2): 116 doi: 10.3321/j.issn:1001-3784.2005.02.009
    [4] Xia P Z, Xu Y, Zhao S T, et al. Research progress of preparation technology of Ti–Mg composite materials. Titanium Ind Prog, 2021, 38(3): 41

    夏朋昭, 许莹, 赵思坛, 等. Ti–Mg复合材料制备技术研究进展. 钛工业进展, 2021, 38(3): 41
    [5] Tian Y Q, Zhao G Z, Liu Y, et al. Research progress in degradation behavior of biodegradable medical Mg-based alloys in vivo and in vitro. J Mater Eng, 2021, 49(5): 24 doi: 10.11868/j.issn.1001-4381.2020.000338

    田亚强, 赵冠璋, 刘芸, 等. 生物可降解医用镁合金体内外降解行为研究进展. 材料工程, 2021, 49(5): 24 doi: 10.11868/j.issn.1001-4381.2020.000338
    [6] Ouyang S H, Huang Q L, Liu Y, et al. Powder metallurgical Ti–Mg metal-metal composites facilitate osteoconduction and osseointegration for orthopedic application. Bioact Mater, 2019, 4(1): 37
    [7] Zhang J L. Preparation and Micro-Arc Oxidation Modification of the Microwave Sintered TiMg Composites [Dissertation]. Nanchang: Nanchang Hangkong University, 2019

    张金龙. 医用Ti–Mg复合材料的微波烧结制备及表面微弧氧化改性研究 [学位论文]. 南昌: 南昌航空大学, 2019
    [8] Wang Q. Degradation Behavior of Biomedical Porous Ti–Mg Composites Prepared by Microwave Sintered [Dissertation]. Nanchang: Nanchang Hangkong University, 2016

    王巧. 生物医用多孔Ti–Mg复合材料的微波烧结制备及降解行为研究[学位论文]. 南昌: 南昌航空大学, 2016
    [9] Jiang S. Design, Fabrication and Characterization of Bicontinuous Titanium-Magnesium Composites [Dissertation]. Harbin: Harbin Institute of Technology, 2017

    姜山. 双连续钛–镁复合材料设计制备与表征[学位论文]. 哈尔滨: 哈尔滨工业大学, 2017
    [10] Jiang G F, Wang C L, Li Q Y, et al. Porous titanium with entangled structure filled with biodegradable magnesium for potential biomedical applications. Mater Sci Eng C, 2015, 47: 142 doi: 10.1016/j.msec.2014.11.014
    [11] Li Q Y, Jiang G F, Wang C L, et al. Mechanical degradation of porous titanium with entangled structure filled with biodegradable magnesium in Hanks’ solution. Mater Sci Eng C, 2015, 57: 349 doi: 10.1016/j.msec.2015.08.008
    [12] Esen Z, Dikici B, Duygulu O, et al. Titanium-magnesium based composites: Mechanical properties and invitro corrosion response in Ringer's solution. Mater Sci Eng A, 2013, 573: 119 doi: 10.1016/j.msea.2013.02.040
    [13] Kumar A, Pandey P M. Study of the influence of microwave sintering parameters on the mechanical behaviour of magnesium-based metal matrix composite. Proc Inst Mech Eng Part C, 2021, 235(13): 2416 doi: 10.1177/0954406220951236
    [14] Chen Q. Fabrication and Property of Aluminum Matrix Composites Reinforced by High Entropy Alloy [Dissertation]. Guangzhou: South China University of Technology, 2016

    陈奇. 高熵合金增强铝基复合材料的制备及性能研究[学位论文]. 广州: 华南理工大学, 2016
    [15] Wang Y Q. Preparation and Properties of Porous Ti–Mg Matrix Bio-Composites with Low Elastic Modulus [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010

    王月勤. 低模量多孔Ti–Mg系生物复合材料的制备与性能研究[学位论文]. 南京: 南京航空航天大学, 2010
    [16] Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004

    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004
    [17] Leung Kishev H Π. Handbook of Metal Binary Phase Diagrams. Transl by Guo Q W. Beijing: Chemical Industry Press, 2008

    梁基谢夫 H П. 金属二元系相图手册. 郭青蔚 等译. 北京: 化学工业出版社, 2008
    [18] Cheng M, Liu Y, Wu H, et al. Effects of parameters of high-energy ball-milling on properties of TiH2 and Mg powder. Mater Sci Eng Powder Metal, 2016, 21(4): 626 doi: 10.3969/j.issn.1673-0224.2016.04.017

    程铭, 刘咏, 吴宏, 等. 高能球磨工艺参数对氢化钛粉和镁粉性能的影响. 粉末冶金材料科学与工程, 2016, 21(4): 626 doi: 10.3969/j.issn.1673-0224.2016.04.017
    [19] Li Y H, Chen N, Cui H T, et al. Fabrication and characterization of porous Ti–10Cu alloy for biomedical application. J Alloys Compd, 2017, 723: 967 doi: 10.1016/j.jallcom.2017.06.321
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  81
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回