熔渗烧结钴浓度梯度对金刚石复合片力学性能的影响

李尚劼 杨华

李尚劼, 杨华. 熔渗烧结钴浓度梯度对金刚石复合片力学性能的影响[J]. 粉末冶金技术, 2021, 39(6): 526-531. doi: 10.19591/j.cnki.cn11-1974/tf.2021090014
引用本文: 李尚劼, 杨华. 熔渗烧结钴浓度梯度对金刚石复合片力学性能的影响[J]. 粉末冶金技术, 2021, 39(6): 526-531. doi: 10.19591/j.cnki.cn11-1974/tf.2021090014
LI Shang-jie, YANG Hua. Effect of cobalt concentration gradient by infiltration sintering on the mechanical properties of polycrystalline diamond compacts[J]. Powder Metallurgy Technology, 2021, 39(6): 526-531. doi: 10.19591/j.cnki.cn11-1974/tf.2021090014
Citation: LI Shang-jie, YANG Hua. Effect of cobalt concentration gradient by infiltration sintering on the mechanical properties of polycrystalline diamond compacts[J]. Powder Metallurgy Technology, 2021, 39(6): 526-531. doi: 10.19591/j.cnki.cn11-1974/tf.2021090014

熔渗烧结钴浓度梯度对金刚石复合片力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021090014
详细信息
    通讯作者:

    E-mail: yang_hua1984@163.com

  • 中图分类号: TQ163

Effect of cobalt concentration gradient by infiltration sintering on the mechanical properties of polycrystalline diamond compacts

More Information
  • 摘要: 研究了金刚石复合片超高压高温烧结钴相熔渗机理和钴浓度梯度对金刚石复合片力性能的影响。结果表明,组装方式不同导致液相钴向金刚石层渗透,引起硬质合金基体沿层界面向内出现明显的浓度梯度。对于基体中部置于高温区中心的组装方法得到的金刚石复合片,其层界面硬质合金侧的钴质量分数达到9.42%,远高于常规对装组装方式金刚石复合片的5.58%,抑制了硬质合金在层界面附近钴流失严重的现象,钴浓度梯度减小,该种组装方法得到的金刚石复合片抗冲击性能明显优于传统对装金刚石复合片。钴浓度梯度的差异没有影响金刚石复合片的耐磨性。
  • 图  1  两种组装方式示意图:(a)组装方式A;(b)组装方式B

    Figure  1.  Schematic diagram of the two assembly methods: (a) assembly mode A; (b) assembly mode B

    图  2  样品A(a)和样品B(b)界面显微形貌

    Figure  2.  Interface SEM images of the sample A (a) and sample B (b)

    图  3  样品A(a)和样品B(b)基体显微形貌

    Figure  3.  Matrix SEM images of the sample A (a) and sample B (b)

    图  4  硬质合金基体自层界面向内纵深5 mm的钴质量分数

    Figure  4.  Cobalt mass fraction in the cemented carbide matrix from the interface to 5 mm depth

    图  5  硬质合金基体自层界面向内纵深5 mm的硬度

    Figure  5.  Hardness in the cemented carbide matrix from the interface to 5 mm depth

    图  6  硬质合金基体硬度测量压痕图片

    Figure  6.  Hardness indentation of the cemented carbide matrix

    图  7  样品A和样品B抗冲击性能测试

    Figure  7.  Impact resistance of the sample A and sample B

    图  8  样品A冲击后宏观形貌

    Figure  8.  Macro-morphology of the sample A after the impact

    图  9  样品B冲击后宏观形貌

    Figure  9.  Macro-morphology of the sample B after the impact

    图  10  样品A和样品B耐磨性

    Figure  10.  Wear resistance of the sample A and sample B

    图  11  样品A(a)和样品B(b)磨口宏观形貌

    Figure  11.  Macro-morphology of the sample A (a) and sample B (b) after wear test

  • [1] García J, Ciprés V C, Blomqvist A, et al. Cemented carbide microstructures: a review. Int J Refract Met Hard Mater, 2019, 80: 40 doi: 10.1016/j.ijrmhm.2018.12.004
    [2] Mukhopadhyay A, Basu B. Recent developments on WC-based bulk composites. J Mater Sci, 2011, 46(3): 571 doi: 10.1007/s10853-010-5046-7
    [3] Bobrovinitchii G S, Skury A L D, Filgueora M, et al. Study on WC‒Co-diamond-based composites used in cutters of drill bits. Mater Sci Forum, 2010, 660: 489
    [4] Lin Z J, Zhang J Z, Li B S, et al. Superhard diamond/tungsten carbide nanocompostites. Appl Phys Lett, 2011, 98(12): 121914 doi: 10.1063/1.3570645
    [5] Jia C C, Li S J. Polycrystalline diamond compact. Met World, 2016(3): 18 doi: 10.3969/j.issn.1000-6826.2016.03.06

    贾成厂, 李尚劼. 聚晶金刚石复合片. 金属世界, 2016(3): 18 doi: 10.3969/j.issn.1000-6826.2016.03.06
    [6] Walmsley J C. The microstructure of ultrahard material compacts studied by transmission electron microscopy. Mater Sci Eng A, 1988, 105-106: 549 doi: 10.1016/0025-5416(88)90742-2
    [7] Deng F M, Chen Q W, Huang P Y. The interfacial structure of polycrystallines of D‒D (bonding) diamond and its growth pattern. Min Metall Eng, 1999, 19(1): 65

    邓福铭, 陈启武, 黄培云. D‒D结合型金刚石聚晶晶界结构及其生长模式. 矿冶工程, 1999, 19(1): 65
    [8] Chen H. Influences of high temperatures and pressures on the impact toughness of cemented carbide substrate. Superhard Mater Eng, 2013, 25(5): 21 doi: 10.3969/j.issn.1673-1433.2013.05.008

    陈辉. 高温高压对硬质合金衬底冲击韧性的影响. 超硬材料工程, 2013, 25(5): 21 doi: 10.3969/j.issn.1673-1433.2013.05.008
    [9] Wang B S, Han J C, Zhang X H. Mechanics of Inhomogeneous Materials. Beijing: China Science Publishing, 2003

    王保森, 韩杰才, 张幸红. 非均匀材料力学. 北京: 科学出版社, 2003
    [10] Jia H S, Jia X P, Ma H A, et al. Study on residual stress of grown polycrystalline diamond compact. Superhard Mater Eng, 2009, 21(1): 1 doi: 10.3969/j.issn.1673-1433.2009.01.001

    贾洪声, 贾晓鹏, 马红安, 等. 生长型金刚石复合片(PDC)的制备和残余应力研究. 超硬材料工程, 2009, 21(1): 1 doi: 10.3969/j.issn.1673-1433.2009.01.001
    [11] Zhang Z J, Zhao S Z, Peng W, et al. Behavior of fatigue crack initiation and propagation of cemented carbides. Chin J Nonferrous Met, 2014, 24(12): 3031

    张忠健, 赵声志, 彭文, 等. 硬质合金疲劳裂纹的萌生与扩展行为. 中国有色金属学报, 2014, 24(12): 3031
    [12] Jiang Y, Li Z Q, Zhong Y P, et al. On the fatigue and fracture features of WC‒Co cemented carbides. Powder Metall Technol, 2012, 30(5): 341 doi: 10.3969/j.issn.1001-3784.2012.05.004

    姜勇, 李中权, 钟益平, 等. WC‒Co硬质合金疲劳断裂机制研究. 粉末冶金技术, 2012, 30(5): 341 doi: 10.3969/j.issn.1001-3784.2012.05.004
    [13] Peng Y B. Changes of microstructure and properties of cemented carbide substrate during the preparation of ultra-high pressure and high temperature composite PDC. Cemented Carbide, 2020, 37(5): 345

    彭玉柏. 超高压-高温复合PDC制备过程中硬质合金基体显微组织结构和性能的变化. 材料科学, 2020, 37(5): 345
    [14] Deng F M, Song M J, Chen W F. Simulation analysis on temperature field of pyrophyllite high temperature and high pressure cavity based on ANSYS. Mech Eng, 2021(2): 22

    邓福铭, 宋美娇, 陈为芳. 基于ANSYS的叶腊石高温高压腔体温度场模拟分析. 机械工程师, 2021(2): 22
    [15] Feng J F, Lin F, Li L W, et al. Study on temperature of different assembly structure in cubic hinge apparatus. Superhard Mater Eng, 2009, 21(3): 21

    冯吉福, 林峰, 李立惟, 等. 六面顶压机上不同组装结构的温度研究. 超硬材料工程, 2009, 21(3): 21
  • 加载中
图(11)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  199
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 刊出日期:  2021-12-10

目录

    /

    返回文章
    返回