氧化铈刻蚀金刚石表面形貌表征

陈冰威 杨雪峰 朱振东 栗正新

陈冰威, 杨雪峰, 朱振东, 栗正新. 氧化铈刻蚀金刚石表面形貌表征[J]. 粉末冶金技术, 2022, 40(4): 318-324. doi: 10.19591/j.cnki.cn11-1974/tf.2021090018
引用本文: 陈冰威, 杨雪峰, 朱振东, 栗正新. 氧化铈刻蚀金刚石表面形貌表征[J]. 粉末冶金技术, 2022, 40(4): 318-324. doi: 10.19591/j.cnki.cn11-1974/tf.2021090018
CHEN Bing-wei, YANG Xue-feng, ZHU Zhen-dong, LI Zheng-xin. Surface morphology characterization of diamond etched by CeO2[J]. Powder Metallurgy Technology, 2022, 40(4): 318-324. doi: 10.19591/j.cnki.cn11-1974/tf.2021090018
Citation: CHEN Bing-wei, YANG Xue-feng, ZHU Zhen-dong, LI Zheng-xin. Surface morphology characterization of diamond etched by CeO2[J]. Powder Metallurgy Technology, 2022, 40(4): 318-324. doi: 10.19591/j.cnki.cn11-1974/tf.2021090018

氧化铈刻蚀金刚石表面形貌表征

doi: 10.19591/j.cnki.cn11-1974/tf.2021090018
详细信息
    通讯作者:

    E-mail: zhengxin_li@haut.edu.cn

  • 中图分类号: TQ732

Surface morphology characterization of diamond etched by CeO2

More Information
  • 摘要: 为研究氧化铈刻蚀对于金刚石表面形貌的影响,将金刚石单晶与氧化铈粉末以质量比1:5的比例混合,并在N2气氛下对金刚石进行刻蚀处理。通过对刻蚀后金刚石的表面形貌、表面刻蚀深度、物相组成的表征与分析探究氧化铈粉末刻蚀对于金刚石表面形貌的影响。利用铜基结合剂金刚石试样的抗弯强度评估刻蚀对于金刚石与结合剂之间把持力的影响。结果表明:氧化铈能成功对金刚石单晶表面进行选择性刻蚀。随着温度的升高,金刚石各个晶面的刻蚀深度加深;在相同条件下,氧化铈对金刚石(100)面的刻蚀程度大于金刚石(111)面。当刻蚀温度为900 ℃时,金刚石(111)面刻蚀深度为753.23 nm,(100)面刻蚀深度为1.60 μm。在N2气氛下,900 ℃氧化铈刻蚀后的金刚石单颗粒抗压强度低于未加氧化铈刻蚀剂刻蚀的金刚石抗压强度,但是高于在空气气氛下未加氧化铈刻蚀剂刻蚀的金刚石以及在空气中直接氧化铈刻蚀的金刚石抗压强度。与未处理金刚石相比,氧化铈刻蚀后的铜基结合剂金刚石试样的抗弯强度有较大提升。
  • 图  1  不同刻蚀温度金刚石表面刻蚀深度

    Figure  1.  Etching depth of the diamond surface at the different etching temperatures

    图  2  950 ℃和1000 ℃刻蚀金刚石表面形貌:(a)、(b)950 ℃;(c)、(d)1000 ℃

    Figure  2.  Etching morphology of the diamond surface at 950 ℃ and 1000 ℃: (a), (b) 950 ℃; (c), (d) 1000 ℃

    图  3  900 ℃刻蚀后金刚石表面形貌:(a)、(c)、(e)(111)面;(b)、(d)、(f)(100)面

    Figure  3.  Surface morphology of the diamond after etching at 900 ℃: (a), (c), (e) (111) surface; (b), (d), (f) (100) surface

    图  4  不同刻蚀条件下金刚石单颗粒抗压强度

    Figure  4.  Compressive strength of the diamond single crystal in the different etching condition

    图  5  原始氧化铈粉末、氧化铈与金刚石混合物、900 ℃氧化铈粉末、900 ℃氧化铈与金刚石混合物的X射线衍射图谱

    Figure  5.  XRD spectra of the original CeO2 powders, CeO2 and diamond mixture, CeO2 powders at 900 ℃, and CeO2 and diamond mixture at 900 ℃

    图  6  900 ℃刻蚀前后金刚石单晶X射线衍射图谱

    Figure  6.  XRD spectra of the diamond single crystal before and after etching at 900 ℃

    图  7  金刚石刻蚀处拉曼图谱分析:(a)(100)面;(b)(111)面

    Figure  7.  Raman spectrum analysis of the diamond etching: (a) (100) surface; (b) (111) surface

    图  8  金刚石(111)面刻蚀原理示意图:(a)脱落原子排布平面示意图;(b)脱落原子排布立体示意图

    Figure  8.  Schematic diagram of the etching principle in diamond (111) surface: (a) schematic diagram of the dropped atom arrangement ; (b) three-dimensional schematic diagram of the fallen atom arrangement

    图  9  金刚石(100)面刻蚀原理示意图:(a)脱落原子排布平面示意图;(b)脱落原子排布立体示意图

    Figure  9.  Schematic diagram of the etching principle in diamond (100) surface: (a) schematic diagram of the dropped atom arrangement ; (b) three-dimensional schematic diagram of the fallen atom arrangement

    图  10  金刚石铜基结合剂试样的抗弯强度

    Figure  10.  Bending strength of the diamond copper-based bond samples

  • [1] Zhu X Y, Kwok S Y, Yuen M F, et al. Dense diamond nanoneedle arrays for enhanced intracellular delivery of drug molecules to cell lines. J Mater Sci, 2015, 50(23): 7800 doi: 10.1007/s10853-015-9351-z
    [2] Scorsone E, Gattout N, Rousseau L, et al. Porous diamond pouch cell supercapacitors. Diamond Relat Mater, 2017, 76: 31 doi: 10.1016/j.diamond.2017.04.004
    [3] Khanaliloo B, Mitchell M, Hryciw A C, et al. High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching. Nano Lett, 2015, 15(8): 5131 doi: 10.1021/acs.nanolett.5b01346
    [4] Li Y Y, Wan L, Wang J S, et al. Influence of temperature on etching and foaming behavior of synthetic diamond powder by iron-based pre-alloyed powders. Mater Rev, 2017, 31(14): 113 doi: 10.11896/j.issn.1005-023X.2017.014.024

    李颖颖, 万隆, 王俊沙, 等. 温度对铁基预合金粉腐蚀泡沫化人造金刚石微粉的影响. 材料导报, 2017, 31(14): 113 doi: 10.11896/j.issn.1005-023X.2017.014.024
    [5] Morofushi Y, Matsushita H, Miki N. Microscale patterning of single crystal diamond by thermochemical reaction between sidero-metal and diamond. Precis Eng, 2011, 35(3): 490 doi: 10.1016/j.precisioneng.2011.03.003
    [6] Masatsugu N, Kazuhiro N, Hiraku T, et al. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour. Sci Rep, 2018, 8(1): 6687 doi: 10.1038/s41598-018-25193-2
    [7] Enriquez J I, Muttaqien F, Michiuchi M, et al. Oxidative etching mechanism of the diamond (100) surface. Carbon, 2021, 174: 36 doi: 10.1016/j.carbon.2020.11.057
    [8] Li L Y, Chen X, Zhang W, et al. Characterization and formation mechanism of pits on diamond {100} face etched by molten potassium nitrite. Int J Refract Met Hard Mater, 2018, 71: 129 doi: 10.1016/j.ijrmhm.2017.11.011
    [9] Xiao C J, Dou Z Q, Zhu Z D. Characterization and formation mechanism of surface morphology on diamond etched by Fe2O3 powder. Mater Rep, 2020, 34(14): 14045 doi: 10.11896/cldb.19070180

    肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理. 材料导报, 2020, 34(14): 14045 doi: 10.11896/cldb.19070180
    [10] Wang J S, Wan L, Chen J, et al. Micropatterning of diamond crystallites via cobalt-catalyzed thermochemical etching. J Mater Sci, 2017, 52(2): 709 doi: 10.1007/s10853-016-0365-y
    [11] Wang J S, Wan L, Chen J, et al. Anisotropy of synthetic diamond in catalytic etching using iron powder. Appl Surf Sci, 2015, 346: 388 doi: 10.1016/j.apsusc.2015.04.022
    [12] Wang J S, Wan L, Chen J, et al. Surface patterning of synthetic diamond crystallites using nickel powder. Diamond Relat Mater, 2016, 66: 206 doi: 10.1016/j.diamond.2016.04.010
    [13] Wei Y J, Anand L. Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystallinefcc metals. J Mech Phys Solids, 2004, 52(11): 2587 doi: 10.1016/j.jmps.2004.04.006
    [14] Pehrsson P, Mercer T W, Chaney J A. Thermal oxidation of the hydrogenated diamond (100) surface. Surf Sci, 2002, 497(1-3): 13 doi: 10.1016/S0039-6028(01)01677-6
    [15] Dou Z Q, Xiao C J, Ren F H, et al. Effect of holding time on etched diamond single crystal by manganese oxide. Powder Metall Technol, 2019, 37(5): 344

    窦志强, 肖长江, 任付豪, 等. 保温时间对锰氧化物刻蚀金刚石单晶的影响. 粉末冶金技术, 2019, 37(5): 344
    [16] Xiao C J, Chen Y G, Li X L, et al. Method and mechanism analysis of improving the holding force between Ni-coated diamond and Cu-matrix bonding. Powder Metall Technol, 2020, 38(1): 25

    肖长江, 陈贻光, 栗晓龙, 等. 镀 Ni 金刚石与铜基结合剂间把持力的提高方法和机理分析. 粉末冶金技术, 2020, 38(1): 25
  • 加载中
图(10)
计量
  • 文章访问数:  569
  • HTML全文浏览量:  276
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 刊出日期:  2022-08-12

目录

    /

    返回文章
    返回