金属丝网多孔材料研究进展

马军 王建忠 吴琛 李广忠 杨保军 敖庆波

马军, 王建忠, 吴琛, 李广忠, 杨保军, 敖庆波. 金属丝网多孔材料研究进展[J]. 粉末冶金技术, 2023, 41(6): 554-563. doi: 10.19591/j.cnki.cn11-1974/tf.2021090021
引用本文: 马军, 王建忠, 吴琛, 李广忠, 杨保军, 敖庆波. 金属丝网多孔材料研究进展[J]. 粉末冶金技术, 2023, 41(6): 554-563. doi: 10.19591/j.cnki.cn11-1974/tf.2021090021
MA Jun, WANG Jianzhong, WU Chen, LI Guangzhong, YANG Baojun, AO Qingbo. Research progress on metal wire mesh porous materials[J]. Powder Metallurgy Technology, 2023, 41(6): 554-563. doi: 10.19591/j.cnki.cn11-1974/tf.2021090021
Citation: MA Jun, WANG Jianzhong, WU Chen, LI Guangzhong, YANG Baojun, AO Qingbo. Research progress on metal wire mesh porous materials[J]. Powder Metallurgy Technology, 2023, 41(6): 554-563. doi: 10.19591/j.cnki.cn11-1974/tf.2021090021

金属丝网多孔材料研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2021090021
基金项目: 陕西省重点研发计划资助项目(2020GY-289,2021GY-231)
详细信息
    通讯作者:

    E-mail: 18909223238@163.com

  • 中图分类号: TF125

Research progress on metal wire mesh porous materials

More Information
  • 摘要: 金属丝网多孔材料是一类孔隙可控、高比表面积、高强度、价格低廉的多孔材料,由于具有高透气性和高过滤精度,在高温烟气、油浆等过滤分离领域得到了广泛应用。由于金属丝网多孔材料同时具有高比表面积、开孔特性、高孔隙度、高强度和孔隙可逐级调控等特性,在光催化、机车尾气净化、高效换热、爆燃冲击防护等领域得到重视。本文介绍了金属丝网多孔材料的结构及制备方法,着重总结了金属丝网多孔材料在过滤分离、催化、高效换热、爆燃防护等领域的应用进展,并对其应用前景和发展方向进行了展望。
  • 图  1  典型多层烧结金属丝网外观形貌:(a)截面;(b)表面

    Figure  1.  Appearance of the typical multilayer sintered metal wire mesh: (a) the cross section; (b) the surface

    图  2  表面改性前后不锈钢丝网表面((a)~(c))及截面(d)显微形貌(框内小图是未修饰金属丝网表面形貌)[8]

    Figure  2.  Scanning electron microscope (SEM) images of the stainless steel wire mesh in the surface ((a)~(c)) and cross-sectional (d) view before and after surface modification (the insets illustrate the original mesh before surface modification)[8]

    图  3  金属丝网表面的水下油接触角(a)和滚动角(b)

    Figure  3.  Under-water oil contact angle (a) and oil sliding angle (b) of the mesh

    图  4  不锈钢丝网显微形貌(a)及其表面掺杂Ag-ZnO纳米棒光催化结构(b)[11]

    Figure  4.  SEM image of the stainless steel wire mesh (a) and the catalyzing structure of ZnO nano-rads doped with Ag (b)[11]

    图  5  Ag掺杂ZnO纳米棒修饰不锈钢丝网对染料溶液的催化效果(a)和催化机理(b)[11];(C/C0为降解前后化学需氧量(COD)的比值,(a)中图标M后数字代表丝网目数,T6P、T6PS1、T6PS2、T6PS3代表硝酸银溶液浓度为0、0.01、0.015和0.02 mol·L−1

    Figure  5.  Catalytic effect (a) and catalytic mechanism (b) of the Ag-doped and ZnO nano-rods modified stainless steel wire mesh[11]

    图  6  Ti丝网原始表面(a)及电沉积Ag后表面形貌((b)~(d))[13]

    Figure  6.  SEM images of the original (a) and Ag-deposited ((b)~(d)) Ti mesh[13]

    图  7  金属丝网油烟过滤器外观(a)及油烟降解率和反应温度关系(b)[15]

    Figure  7.  Appearance of the wire-mesh structured substrate (a) and the relationship between soot conversion and temperature (b)[15]

    图  8  Rh/θ-Al2O3/FeCrAl丝网复合催化材料外观(a)和高温运行后丝网表面催化剂微观结构(b)[17]

    Figure  8.  Appearance of the Rh/θ-Al2O3/FeCrAl composite catalyst (a) and SEM image of the Rh/θ-Al2O3/FeCrAl composite catalyst after high-temperature reaction (b)[17]

    图  9  丝网–U型管液/气换热器外观(a)及其对热空气降温效果(b)[19](图标中plain tube代表U型管,Clamped代表U型管结合金属丝网,后缀代表丝网目数)

    Figure  9.  Appearance of the U-shape wire mesh heat exchanger (a) and the tube temperature drop through the heat exchangers (b)[19]

    图  10  具有丝网多孔换热表面的液/气换热器外观[20]

    Figure  10.  Appearance of the wire mesh heat exchanger[20]

    图  11  304不锈钢丝网表面多孔结构[21]

    Figure  11.  Porous structure on the 304 stainless steel wire mesh surface[21]

    图  12  铜丝网–铜翅片沸腾换热器表面相貌(a)和换热机理(b)[22]a—孔径,Pp—节距,∆t0−1—等待期,∆t1−2—生长期,∆t2−3—摄入期,db—逸出气泡的直径)

    Figure  12.  Surface appearance of the copper wire mesh–copper fin boiling heat exchanger (a) and heat transfer mechanism (b)[22]

    图  13  双层丝网火焰抑制机理[24]:(a)丝网间隔5 cm;(b)丝网间隔1 cm

    Figure  13.  Flame suppression mechanism of the double wire mesh[24]: (a) separation distance 5 cm; (b) separation distance 1 cm

    表  1  核工业用镍合金丝网过滤元件性能[3]

    Table  1.   Performance of the nickel alloy wire mesh filtration elements[3]

    等级汽泡试验孔径 / µm初始冒泡压力 / kPa过滤精度* / µm透气性 / (m3·h1·kPa−1·m−2) 环拉强度 / MPa耐压强度 / MPa
    NF005≤20≥5.002.5~7.5≥120≥30≥3
    NF010≤25≥3.707.5~12.5≥1100≥30≥3
    NF020≤48≥1.9017.5~22.5≥2100≥30≥3
    NF030≤76≥1.2027.5~35.0≥3000≥30≥3
    NF050≤110≥0.8545.0~60.0≥4000≥30≥3
    注:*过滤效率为98%时,气体中阻挡的颗粒尺寸值
    下载: 导出CSV

    表  2  金属丝网过滤器的气固过滤性能

    Table  2.   Gas/solid filtration performance of the wire metal mesh filtration

    滤芯类型 滤芯尺
    寸 / mm
    过滤精
    度 / μm
    过滤效
    率 / %
    压差 /
    kPa
    初始压
    降 / kPa
    泡点压
    力 / kPa
    透气性 /
    (m3·h−1·kPa−1·m−2)
    耐压强度 / MPa 孔隙度 /
    %
    外压 内压
    金属烧结丝网 ϕ65×1000 5 ≥99.8 ≤10 3.72 5 260 1.2 0.4 38
    下载: 导出CSV

    表  3  丝网孔径对滤出液的影响[6]

    Table  3.   Effect of mesh pore size on the cleaned water[6]

    相关指标原煤泥水料液丝网过滤滤液
    15 µm45 µm
    悬浮物含量 / (mg·L−1)500006.515.1
    截留率 / %99.987099.9698
    下载: 导出CSV
  • [1] Liu Y P, Xu G Q, Luo X, et al. An experimental investigation on fluid flow and heat transfer characteristics of sintered woven wire mesh structures. Appl Therm Eng, 2015, 80(5): 118
    [2] Xi Z P, Tang H P. Sintered Metallic Porous Materials. Bejing: Metallurgical Industry Press, 2009

    奚正平, 汤慧萍. 烧结金属多孔材料. 北京: 冶金工业出版社, 2009
    [3] State Administration of Science, Technology and Industry National Defence. EJ/T 20248-2020 Specification for Nickel and Nickel Alloy Mesh Sintered Filter Elements for Nuclear Industry. Beijing: Institute for Standardization of Nuclear Industry, 2020

    国家国防科技工业局. EJ/T 20248-2020核用镍及镍合金丝网烧结过滤元件规范. 北京: 核工业标准化研究所, 2020
    [4] Xing Y, Kuang C J. Development of filter elements for high-temperature gas filtration. J Filtr Sep, 2004, 14(2): 1 doi: 10.3969/j.issn.1005-8265.2004.02.001

    邢毅, 况春江. 高温除尘过滤材料的研究. 过滤与分离, 2004, 14(2): 1 doi: 10.3969/j.issn.1005-8265.2004.02.001
    [5] Li G Z, Li G, Kang X T, et al. A Manufacture Method of Foam Stainless Steel Composite Tube: China Patent, 201410412787.2. 2016-2-24

    李广忠, 李纲, 康新婷, 等. 一种泡沫不锈钢复合管的制备方法: 中国专利, 201410412787.2. 2016-2-24
    [6] Wang X Q. Research on metal mesh porous membrane filtration for slime water treatment difficult sedimentation. Shanxi Metall, 2018, 172(2): 27 doi: 10.16525/j.cnki.cn14-1167/tf.2018.02.09

    王晓强. 金属丝网膜过滤难沉降煤泥水的影响因素研究. 山西冶金, 2018, 172(2): 27 doi: 10.16525/j.cnki.cn14-1167/tf.2018.02.09
    [7] Zhang X F, Bu Y F, Men Z W. Application of filtration technology in slurry oil clarification. Chem Ind Eng Prog, 2016, 35(12): 3746 doi: 10.16085/j.issn.1000-6613.2016.12.003

    张晓方, 卜亿峰, 门卓武. 过滤技术在油浆分离中的应用. 化工进展, 2016, 35(12): 3746 doi: 10.16085/j.issn.1000-6613.2016.12.003
    [8] Zhang H J. The Study on the Fabrication of Superhydrophobic Mesh for Oil/Water Separation [Dissertation]. Tianjin: University of Tianjin, 2018

    张宏杰. 超疏水金属丝网的制备及其油水分离性能研究[学位论文]. 天津: 天津大学, 2018
    [9] Chang C J, Chen J K, Lin K S, et al. Enhanced visible-light-driven photocatalytic degradation by metal wire-mesh supported Ag/flower-like Bi2WO6 photocatalysts. J Alloys Compd, 2020, 813(3): 152186
    [10] Chang C J, Chao P Y, Lin K S. Flower-like BiOBr decorated stainless steel wire-mesh as immobilized photocatalysts for photocatalytic degradation applications. Appl Surf Sci, 2019, 494(3): 492
    [11] Hsu M H, Chang C J. Ag-doped ZnO nanorods coated metal wire meshes as hierarchical photocatalysts with high visible-light driven photoactivity and photostability. J Hazard Mater, 2014, 278(4): 444
    [12] Li D, Zhang X Y, Zhang W. Designing a new reaction system by stacking use of Ti mesh supported Ag/N-TiO2 nano-sheets for enhanced photocatalytic degradation of bisphenol A. Chem Eng J, 2021, 405(1): 126867
    [13] Hao W M, Bao X L, Dou X M, et al. Ti mesh loaded with multibranched Ag “bushes”: Preparation and high sensitivity to 5-nitroguaiacol. Mater Lett, 2020, 276(3): 128201
    [14] Su C S, DeHart T, Anderson M, et al. Structured glass catalytic coating on wire mesh for particulate matter (PM) removal by modified sol-gel processing. Mater Lett, 2019, 234(7): 168
    [15] Banús E D, Sanz O, Milt V G, et al. Development of a stacked wire-mesh structure for diesel soot combustion. Chem Eng J, 2014, 246(1): 353
    [16] Sanz O, Banús E D, Goya A, et al. Stacked wire-mesh monoliths for VOCs combustion: Effect of the mesh-opening in the catalytic performance. Catal Today, 2017, 296(11): 76
    [17] Rogozhnikov V N, Snytnikov P V, Salanov A N, et al. Rh/θ-Al2O3/FeCr alloy wire mesh composite catalyst for partial oxidation of natural gas. Mater Lett, 2019, 236(12): 316
    [18] Brussino P, Gross M S, Banús E D, et al. CuO/TiO2-ZrO2 wire-mesh catalysts for phenol wet oxidation: Substrate effect on the copper leaching. Chem Eng Process, 2019, 146(3): 107686
    [19] Fu Y C, Wen J, Zhang C Z. An experimental investigation on heat transfer enhancement of sprayed wire-mesh heat exchangers. Int J Heat Mass Transfer, 2017, 112(5): 699
    [20] Kurian R, Balaji C, Venkateshan S P. Experimental investigation of near compact wire mesh heat exchangers. Appl Therm Eng, 2016, 108(9): 1158
    [21] Kim H, Park Y, Kim H, et al. Critical heat flux enhancement by single-layered metal wire mesh with micro and nano-sized pore structures. Int J Heat Mass Transfer, 2017, 115(5): 439
    [22] Pastuszko R. Pool boiling heat transfer on micro-fins with wire mesh—Experiments and heat flux prediction. Int J Therm Sci, 2018, 125(1): 197
    [23] Xiao W F, Andrae M, Gebbeken N. Experimental investigations of shock wave attenuation performance using protective barriers made of woven wire mesh. Int J Impact Eng, 2019, 131(3): 209
    [24] Dai H M, Wang X T, Chen X F, et al. Suppression characteristics of double-layer wire mesh on wheat dust flame. Powder Technol, 2020, 360(2): 231
    [25] Cui Y Y, Wang Z R, Zhou K B, et al. Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines. J Loss Prev Process Ind, 2017, 45(6): 69
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  2032
  • HTML全文浏览量:  63
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-08
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回