粉末冶金钛基层状材料研究进展

徐静茹 张卫东 杨鹏 陈福林 吴正刚 曹远奎

徐静茹, 张卫东, 杨鹏, 陈福林, 吴正刚, 曹远奎. 粉末冶金钛基层状材料研究进展[J]. 粉末冶金技术, 2023, 41(1): 71-78. doi: 10.19591/j.cnki.cn11-1974/tf.2021090022
引用本文: 徐静茹, 张卫东, 杨鹏, 陈福林, 吴正刚, 曹远奎. 粉末冶金钛基层状材料研究进展[J]. 粉末冶金技术, 2023, 41(1): 71-78. doi: 10.19591/j.cnki.cn11-1974/tf.2021090022
XU Jingru, ZHANG Weidong, YANG Peng, CHEN Fulin, WU Zhenggang, CAO Yuankui. Progress of titanium-based laminated materials by powder metallurgy[J]. Powder Metallurgy Technology, 2023, 41(1): 71-78. doi: 10.19591/j.cnki.cn11-1974/tf.2021090022
Citation: XU Jingru, ZHANG Weidong, YANG Peng, CHEN Fulin, WU Zhenggang, CAO Yuankui. Progress of titanium-based laminated materials by powder metallurgy[J]. Powder Metallurgy Technology, 2023, 41(1): 71-78. doi: 10.19591/j.cnki.cn11-1974/tf.2021090022

粉末冶金钛基层状材料研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2021090022
基金项目: 国家自然科学基金资助项目(51904100);湖南省自然科学基金资助项目(2021JJ40101);湖南省科技创新计划资助项目(2020RC2007)
详细信息
    通讯作者:

    E-mail: weidongzhang@hnu.edu.cn (张卫东)

    caoyuankui@csu.edu.cn (曹远奎)

  • 中图分类号: TG142.71

Progress of titanium-based laminated materials by powder metallurgy

More Information
  • 摘要: 日益严苛的服役环境对钛材性能提出新的要求与挑战,层状结构的引入使钛基材料突破强度–韧性的桎梏有了新的思路。近年来,钛基层状结构材料成为研究热点,通过不同制备技术获得的钛基层状结构材料展现出了优异的力学性能。粉末冶金技术具有工艺简便、高效,易于实现组元调控与钛材性能优化等优点。本文对目前钛基层状材料的类型、主流制备技术进行阐述,着重介绍了粉末冶金钛基层状材料的研究进展,总结了高性能钛基层状结构的强韧化机制,最后对钛基层状结构材料的基础研究与实际应用进行了展望。
  • 图  1  累积叠轧工艺生产复合材料示意图[23]

    Figure  1.  Schematic illustration of the composite materials produced by ARB process[23]

    图  2  Ti粉与TNTZO粉的形貌以及铺粉式粉末冶金制备工艺流程示意图[14]:(a)纯Ti粉;(b)TNTZO粉;(c)Ti粉与β-Ti粉交替铺粉示意图;(d)制备Ti/TNTZO/Ti层状材料工艺流程图,冷轧方向(CRD),热轧方向(HRD),法向(ND),轧辊方向(TD)。

    Figure  2.  Schematic diagram of the spread powders by powder metallurgy[14]: (a) microstructure of the pure titanium powders; (b) microstructure of TNTZO alloy powders; (c) schematic diagram of alternate spreading of Ti powder and β-Ti powder; (d) processing route of the Ti/TNTZO/Ti sandwich composites, the cool rolling direction(CRD), the hot rolling direction (HRD), normal direction (ND), and transverse direction (ND) were marked near the sample.

    图  3  混粉式粉末冶金制备工艺流程示意图[15]

    Figure  3.  Schematic diagram of the powder metallurgy by powder mixing[15]

    图  4  Ti–Mo均质材料与异质层状材料工程应力应变曲线(a)和Ti–Mo异质层状材料纵向显微组织(b)[15]

    Figure  4.  Engineering stress-strain curves of the Ti–Mo homogeneous materials and heterogeneous laminated materials (a) and the longitudinal microstructure of the Ti–Mo heterogeneous laminated materials (b)[15]

    图  5  拉伸试验后Ti–3Al–4.5V–5Mo异质层状合金透射电子显微形貌:(a)低倍镜下高密度位错堆积在(α+β)基体与β纤维的界面周围;(b)、(d)β相界面附近位错堆积;(c)(α+β)基体界面附近的α-孪晶;(e)D区β相界面附近的马氏体[15]

    Figure  5.  Transmission electron microscope images of the Ti–3Al–4.5V–5Mo heterogeneous laminated alloys after tensile testing: (a) high density of dislocations around the interface between (α+β) matrix and β fiber in low magnification; (b), (d) dislocations pile-up in β phase near the interface; (c) twining in α phase near the interface; (e) martensitic transformation found in region D[15]

    图  6  微小裂纹在Ti/TNTZO界面处萌生[14]

    Figure  6.  Initiation of the micro-cracks at the Ti/TNTZO interface[14]

  • [1] Olszta M J, Cheng X G, Jee S S, et al. Bone structure and formation: A new perspective. Mater Sci Eng R, 2007, 58(3-5): 77 doi: 10.1016/j.mser.2007.05.001
    [2] Falini G, Albeck S, Weiner S, et al. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 1996, 271(5245): 67 doi: 10.1126/science.271.5245.67
    [3] Kochmann W, Reibold M, Goldberg R, et al. Nanowires in ancient Damascus steel. J Alloys Compd, 2004, 372(1-2): L15 doi: 10.1016/j.jallcom.2003.10.005
    [4] Sherby O D, Wadsworth J. Ancient blacksmiths, the Iron Age, Damascus steels, and modern metallurgy. J Mater Proc Technol, 2001, 117(3): 347 doi: 10.1016/S0924-0136(01)00794-4
    [5] Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA, 2015, 112(47): 14501 doi: 10.1073/pnas.1517193112
    [6] Yan L M, Yu J H, Zhong Y X, et al. Influence of scanning on nano crystalline β–Ti alloys fabricated by selective laser melting and their applications in biomedical science. J Nanosci Nanotechnol, 2020, 20(3): 1605 doi: 10.1166/jnn.2020.17340
    [7] Oh J M, Chan H P, Yeom J T, et al. High strength and ductility in low-cost Ti–Al–Fe–Mn alloy exhibiting transformation-induced plasticity. Mater Sci Eng A, 2020, 772(20): 138813
    [8] Liu Q, Hui S X, Song S Y, et al. Materials selection of titanium alloy OCTG used for oil and gas exploration and their applicability under service condition: a survey. Mater Rep, 2019, 33(3): 115 doi: 10.11896/cldb.201905017

    刘强, 惠松骁, 宋生印, 等. 油气开发用钛合金油井管选材及工况适用性研究进展. 材料导报, 2019, 33(3): 115 doi: 10.11896/cldb.201905017
    [9] Hargrave B, Gonzalez M, Maskos K, et al. Titanium alloy tubing for HPHT OCTG applications // CORROSION 2010. San Antonio, 2010: 10318
    [10] Jiang H, Chen Y Y. Research and application progress of titanium alloys on ships. Adv Mater Ind, 2018(12): 13 doi: 10.19599/j.issn.1008-892x.2018.12.003

    江洪, 陈亚杨. 钛合金在舰船上的研究及应用进展. 新材料产业, 2018(12): 13 doi: 10.19599/j.issn.1008-892x.2018.12.003
    [11] Wang K, Wu L, Li Y Z, et al. Experimental study on fatigue crack growth of new titanium alloy materials. Ship Sci Technol, 2020, 42(11): 9 doi: 10.3404/j.issn.1672-7649.2020.11.002

    王珂, 吴丽, 李永正, 等. 新型钛合金材料疲劳裂纹扩展试验研究. 舰船科学技术, 2020, 42(11): 9 doi: 10.3404/j.issn.1672-7649.2020.11.002
    [12] Wu Q C, Ji Z, Jia C C, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225 doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.011

    武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术, 2019, 37(3): 225 doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.011
    [13] Wu X L, Zhu Y T. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett, 2017, 5(8): 527 doi: 10.1080/21663831.2017.1343208
    [14] Zhang W D, Yang P, Cao Y K, et al. New Ti/β–Ti alloy laminated composite processed by powder metallurgy: Microstructural evolution and mechanical property. Mater Sci Eng A, 2021, 822: 141702 doi: 10.1016/j.msea.2021.141702
    [15] Cao Y K, Zhang W D, Liu B, et al. Extraordinary tensile properties of titanium alloy with heterogeneous phase-distribution based on hetero-deformation induced hardening. Mater Res Lett, 2020, 8(7): 254 doi: 10.1080/21663831.2020.1745919
    [16] Song Y, Yang R, Guo Z X. First principles estimation of bulk modulus and theoretical strength of titanium alloys. Mater Trans, 2002, 43(12): 3028 doi: 10.2320/matertrans.43.3028
    [17] Kovacs P, Davidson J A. Chemical and electrochemical aspects of the biocompatibility of titanium and its alloys // Medical Applications of Titanium and Its Alloys: The Materials and Biological Issues. West Conshohocken, 1996: 163
    [18] Hall E O. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B, 1951, 64(9): 747 doi: 10.1088/0370-1301/64/9/303
    [19] Petch N J. The cleavage strength of polycrystals. J Iron Steel Inst, 1953, 174: 25
    [20] Armstrong R, Codd I, Douthwaite R M, et al. The plastic deformation of polycrystalline aggregates. Phil Mag:J Theoret Exper Appl Phys, 1962, 7(73): 45
    [21] Qin L, Wang J, Wu Q, et al. In-situ observation of crack initiation and propagation in Ti/Al composite laminates during tensile test. J Alloys Compd, 2017, 712: 69 doi: 10.1016/j.jallcom.2017.04.063
    [22] Hoseini-Athar M M, Tolaminejad B. Interface morphology and mechanical properties of Al–Cu–Al laminated composites fabricated by explosive welding and subsequent rolling process. Met Mater Int, 2016, 22(4): 670 doi: 10.1007/s12540-016-5687-4
    [23] Karimi M, Toroghinejad M R. An alternative method for manufacturing high-strength CP Ti–SiC composites by accumulative roll bonding process. Mater Des, 2014, 59: 494 doi: 10.1016/j.matdes.2014.03.040
    [24] Mo T, Chen J, Chen Z J, et al. Effect of intermetallic compounds (IMCs) on the interfacial bonding strength and mechanical properties of pre-rolling diffusion ARBed Al/Ti laminated composites. Mater Charact, 2020, 170: 110731 doi: 10.1016/j.matchar.2020.110731
    [25] Huang M, Fan G H, Geng L, et al. Revealing extraordinary tensile plasticity in layered Ti–Al metal composite. Sci Rep, 2016, 6: 38461 doi: 10.1038/srep38461
    [26] Lei H, Cui S, Zhou Z L, et al. Research and development of Cu/Mo/Cu laminated composite material. Powder Metall Technol, 2011, 29(3): 218 doi: 10.19591/j.cnki.cn11-1974/tf.2011.03.014

    雷虎, 崔舜, 周增林, 等. Cu/Mo/Cu平面层状复合材料的研究进展. 粉末冶金技术, 2011, 29(3): 218 doi: 10.19591/j.cnki.cn11-1974/tf.2011.03.014
    [27] Li Y, Zhou Z L, Hui Z L, et al. Preparation of Cu/Mo/Cu laminated composite material with high interfacial bonding strength. Powder Metall Technol, 2017, 35(1): 34 doi: 10.3969/j.issn.1001-3784.2017.01.006

    李艳, 周增林, 惠志林, 等. 高界面结合强度铜/钼/铜叠层复合材料的制备研究. 粉末冶金技术, 2017, 35(1): 34 doi: 10.3969/j.issn.1001-3784.2017.01.006
    [28] Xu S H, Du M, Li J, et al. Bio-mimic Ti–Ta composite with hierarchical “Brick-and-Mortar” microstructure. Materialia, 2019, 8: 100463 doi: 10.1016/j.mtla.2019.100463
    [29] Ye N, Ren X P, Liang J H. Microstructure and mechanical properties of Ni/Ti/Al/Cu composite produced by accumulative roll bonding (ARB) at room temperature. J Mater Res Technol, 2020, 9(3): 5524 doi: 10.1016/j.jmrt.2020.03.077
    [30] Ding H, Cui X P, Gao N N, et al. Fabrication of (TiB/Ti)–TiAl composites with a controlled laminated architecture and enhanced mechanical properties. J Mater Sci Technol, 2021, 62: 221 doi: 10.1016/j.jmst.2020.06.011
    [31] Lei C X, Du Y, Zhu M, et al. Microstructure and mechanical properties of in situ TiC/Ti composites with a laminated structure synthesized by spark plasma sintering. Mater Sci Eng A, 2021, 812: 141136 doi: 10.1016/j.msea.2021.141136
    [32] Xu S H, Zhou C S, Liu Y. Research progress of metal-metal laminated structure composites. Chin J Nonferrous Met, 2019, 29(6): 1125

    徐圣航, 周承商, 刘咏. 金属–金属层状结构复合材料研究进展. 中国有色金属学报, 2019, 29(6): 1125
    [33] Kang Y, Mao W M, Chen Y J, et al. Influence of Nb content on grain size and mechanical properties of 18wt% Cr ferritic stainless steel. Mater Sci Eng A, 2016, 677: 453 doi: 10.1016/j.msea.2016.09.080
    [34] Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater, 2005, 53(18): 4817 doi: 10.1016/j.actamat.2005.06.025
    [35] Xin D W, Zhou W, Li Q. A new type extra-high strength and medium toughness titanium alloy of Ti-1500. Mater China, 2021, 40(6): 441 doi: 10.7502/j.issn.1674-3962.202005029

    辛社伟, 周伟, 李倩, 等. 1500 MPa级新型超高强中韧钛合金. 中国材料进展, 2021, 40(6): 441 doi: 10.7502/j.issn.1674-3962.202005029
    [36] Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett, 2019, 7(10): 393 doi: 10.1080/21663831.2019.1616331
    [37] Wu H, Geng L, Fan G H, et al. Nanoscale strain characterization of Ti3Al precipitate-reinforced Ti alloys. Mater Lett, 2017, 209: 182 doi: 10.1016/j.matlet.2017.08.005
    [38] Guo T, Chen Y M, Cao R H, et al. Cleavage cracking of ductile-metal substrates induced by brittle coating fracture. Acta Mater, 2018, 152: 77 doi: 10.1016/j.actamat.2018.04.017
    [39] Guo T, Qiao L J, Pang X L, et al. Brittle film-induced cracking of ductile substrates. Acta Mater, 2015, 99: 273 doi: 10.1016/j.actamat.2015.07.059
    [40] Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study. Scr Mater, 2017, 135: 63 doi: 10.1016/j.scriptamat.2017.03.030
    [41] Wu H, Fan G H, Huang M, et al. Fracture behavior and strain evolution of laminated composites. Compos Struct, 2017, 163: 123 doi: 10.1016/j.compstruct.2016.12.036
    [42] Liu Z Q, Meyers M A, Zhang Z F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog Mater Sci, 2017, 88: 467 doi: 10.1016/j.pmatsci.2017.04.013
    [43] He Y I, Yan Y J, Qiao L J, et al. In situ transmission electron microscopy study of alpha-brass nanoligament formation, microstructure evolution and fracture. Scr Mater, 2011, 65(5): 444 doi: 10.1016/j.scriptamat.2011.05.032
    [44] Wu H, Fan G H, Jin B C, et al. Enhanced fracture toughness of TiBw/Ti3Al composites with a layered reinforcement distribution. Mater Sci Eng A, 2016, 670: 233 doi: 10.1016/j.msea.2016.06.026
    [45] Zhou X L, Chen C Q. Molecular dynamic simulations of the mechanical properties of crystalline/crystalline and crystalline/amorphous nanolayered pillars. Comput Mater Sci, 2015, 101: 194 doi: 10.1016/j.commatsci.2015.01.033
    [46] Liu M C, Lee C J, Lai Y H, et al. Microscale deformation behavior of amorphous/nanocrystalline multilayered pillars. Thin Solid Films, 2010, 518(24): 7295 doi: 10.1016/j.tsf.2010.04.096
    [47] Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science, 2011, 331(6024): 1587 doi: 10.1126/science.1200177
  • 加载中
图(6)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  184
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回