铝质量分数对FeCrAl合金多孔材料性能的影响

郭菲 余航 高振城 马骏梁 张惠斌

郭菲, 余航, 高振城, 马骏梁, 张惠斌. 铝质量分数对FeCrAl合金多孔材料性能的影响[J]. 粉末冶金技术, 2022, 40(2): 145-151. doi: 10.19591/j.cnki.cn11-1974/tf.2021100003
引用本文: 郭菲, 余航, 高振城, 马骏梁, 张惠斌. 铝质量分数对FeCrAl合金多孔材料性能的影响[J]. 粉末冶金技术, 2022, 40(2): 145-151. doi: 10.19591/j.cnki.cn11-1974/tf.2021100003
GUO Fei, YU Hang, GAO Zhen-cheng, MA Jun-liang, ZHANG Hui-bin. Effect of Al mass fraction on the properties of porous FeCrAl alloys[J]. Powder Metallurgy Technology, 2022, 40(2): 145-151. doi: 10.19591/j.cnki.cn11-1974/tf.2021100003
Citation: GUO Fei, YU Hang, GAO Zhen-cheng, MA Jun-liang, ZHANG Hui-bin. Effect of Al mass fraction on the properties of porous FeCrAl alloys[J]. Powder Metallurgy Technology, 2022, 40(2): 145-151. doi: 10.19591/j.cnki.cn11-1974/tf.2021100003

铝质量分数对FeCrAl合金多孔材料性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021100003
基金项目: 国家自然科学基金资助项目(51801183);浙江省自然科学基金资助项目(LGG21E010006)
详细信息
    通讯作者:

    E-mail: zhanghb@zjut.edu.cn

  • 中图分类号: TF124

Effect of Al mass fraction on the properties of porous FeCrAl alloys

More Information
  • 摘要: 铁铬铝(FeCrAl)合金是一种典型的耐热合金,由其开发而成的耐高温金属多孔材料已经在煤气净化、高温催化剂载体等方面获得了广泛的应用。在反应合成制备FeCrAl合金多孔材料过程中,铝质量分数在多孔材料孔结构、力学性能及抗氧化性能等方面具有重要影响。本文在Fe‒20%Cr合金(质量分数)基础上添加不同质量分数的铝粉(0~20%),以铁、铝、铬元素混合粉为原料,通过反应合成方法制备了一系列FeCrAl合金多孔材料(Fe‒20Cr‒xAl,x=0~20%,质量分数),研究了铝质量分数对Fe‒20Cr‒xAl多孔材料物相、孔结构、力学性能以及抗氧化性能的影响。结果表明,添加5%铝(质量分数)的Fe‒20Cr‒xAl多孔材料具有较优的孔隙度和力学性能,同时在600~800 ℃高温氧化实验中表现出最优的抗氧化性能和力学性能稳定性。
  • 图  1  Fe‒20Cr‒xAl多孔材料X射线衍射谱图

    Figure  1.  XRD patterns of the Fe‒20Cr‒xAl porous materials

    图  2  多孔材料的孔结构:(a)Fe‒20Cr;(b)Fe‒20Cr‒5Al;(c)Fe‒20Cr‒10Al;(d)Fe‒20Cr‒20Al

    Figure  2.  Pore structures of the porous materials: (a) Fe‒20Cr; (b) Fe‒20Cr‒5Al; (c) Fe‒20Cr‒10Al; (d) Fe‒20Cr‒20Al

    图  3  Fe‒20Cr‒xAl合金多孔材料的开孔隙度和平均孔径

    Figure  3.  Open porosities and the average pore sizes of the porous Fe‒20Cr‒xAl materials

    图  4  Fe‒20Cr‒xAl合金多孔材料的拉伸强度和断裂伸长率

    Figure  4.  Tensile strength and elongation of the porous Fe‒20Cr‒xAl materials

    图  5  Fe‒20Cr‒xAl合金多孔材料循环氧化质量增重曲线:(a)600 ℃;(b)700 ℃;(c)800 ℃

    Figure  5.  Mass gain curves of the Fe‒20Cr‒xAl porous materials oxidized at different temperatures: (a) 600 ℃; (b) 700 ℃; (c)800 ℃

    图  6  800 ℃氧化100 h后Fe‒20Cr‒xAl合金多孔材料的X射线衍射谱图

    Figure  6.  XRD patterns of the Fe‒20Cr‒xAl porous materials oxidized at 800 ℃ for 100 h

    图  7  多孔材料在800 ℃氧化100 h后显微形貌:(a)Fe‒20Cr‒0Al;(b)Fe‒20Cr‒5Al;(c)Fe‒20Cr‒10Al;(d)Fe‒20Cr‒20Al

    Figure  7.  SEM images of the porous materials oxidized at 800 ℃ for 100 h: (a) Fe‒20Cr‒0Al; (b) Fe‒20Cr‒5Al; (c) Fe‒20Cr‒10Al; (d) Fe‒20Cr‒20Al

    图  8  800 ℃下Fe‒20Cr‒xAl合金多孔材料的拉伸强度(a)和断裂伸长率(b)与氧化时间的关系

    Figure  8.  Tensile strength (a) and elongation (b) of the Fe‒20Cr‒xAl porous materials oxidized at 800 ℃ for the different oxidation times

    表  1  Fe‒20Cr‒xAl合金多孔材料在初始和稳定阶段的氧化速率常数和拟合系数(R2

    Table  1.   Oxidation rate constants and the fitting coefficients (R2) of the porous Fe‒20Cr‒xAl materials in the initial and subsequent stable oxidation stages

    试样抛物线速率常数 / (%·h‒1)R2线性速率常数 / (%·h‒1)R2
    Fe‒20Cr (600 ℃)8.7×10−30.804.0×10−30.99
    Fe‒20Cr‒5Al(600 ℃)5.2×10−40.862.5×10−40.89
    Fe‒20Cr‒10Al(600 ℃)1.4×10−30.693.0×10−40.99
    Fe‒20Cr‒20Al(600 ℃)1.7×10−30.726.3×10−40.98
    Fe‒20Cr (700 ℃)5.3×10−20.791.4×10−20.98
    Fe‒20Cr‒5Al(700 ℃)5.0×10−30.951.4×10−30.88
    Fe‒20Cr‒10Al(700 ℃)5.2×10−30.951.8×10−30.92
    Fe‒20Cr‒20Al(700 ℃)9.0×10−30.984.4×10−30.98
    Fe‒20Cr (800 ℃)9.0×10−20.902.1×10−20.96
    Fe‒20Cr‒5Al (800 ℃)1.5×10−20.985.0×10−30.99
    Fe‒20Cr‒10Al(800 ℃)1.9×10−20.976.5×10−30.98
    Fe‒20Cr‒20Al(800 ℃)4.0×10−20.871.1×10−20.99
    下载: 导出CSV
  • [1] Zhang H B, Wang L F, Ma J L, et al. Reactive synthesis of porous FeAlCr intermetallics with enhanced mechanical property and oxidation resistance by introducing yttrium borides. Mater Chem Phys, 2021, 273: 124929 doi: 10.1016/j.matchemphys.2021.124929
    [2] Zhang H B, Gao H Y, Yu H, et al. The role of Cr in the reactive synthesis of porous FeAlCr intermetallic compounds. Mater Chem Phys, 2020, 249: 123013 doi: 10.1016/j.matchemphys.2020.123013
    [3] Yin L, Jurewicz T B, Larsen M, et al. Uniform corrosion of FeCrAl cladding tubing for accident tolerant fuels in light water reactors. J Nucl Mater, 2021, 554: 153090 doi: 10.1016/j.jnucmat.2021.153090
    [4] Tan P, Li A J, Chen J M, et al. Sulfidation resistance of porous FeCrAl alloy. Mater Sci Forum, 2018, 933: 226 doi: 10.4028/www.scientific.net/MSF.933.226
    [5] Liu Y Y, Zheng Q Y. Effect of aluminum powders on the oxidation resistance of Al2O3‒MgO composites. Powder Metall Technol, 2019, 37(5): 367

    刘玉瑛, 郑清瑶. 铝粉对Al2O3–MgO复合材料抗氧化性的影响. 粉末冶金技术, 2019, 37(5): 367
    [6] Jiang G, Xu D, Feng P, et al. Corrosion of FeCrAl alloys used as fuel cladding in nuclear reactors. J Alloys Compd, 2021, 869: 159235 doi: 10.1016/j.jallcom.2021.159235
    [7] Gussev M N, Field K G, Yamamoto Y. Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys. Mater Des, 2017, 129: 227 doi: 10.1016/j.matdes.2017.05.009
    [8] Wang F, Xi Z P, Tang H P, et al. Research progress of porous Fe‒Al alloy materials. Powder Metall Technol, 2010, 28(6): 463

    王峰, 奚正平, 汤慧萍, 等. Fe‒Al 合金多孔材料研究进展. 粉末冶金技术, 2010, 28(6): 463
    [9] Zhang H B, Liu X L, Jiang Y, et al. Direct separation of arsenic and antimony oxides by high-temperature filtration with porous FeAl intermetallic. J Hazard Mater, 2017, 338: 364 doi: 10.1016/j.jhazmat.2017.05.049
    [10] Pauletto G, Vaccari A, Groppi G, et al. FeCrAl as a catalyst support. Chem Rev, 2020, 120(15): 7516 doi: 10.1021/acs.chemrev.0c00149
    [11] Uvarov V I, Kapustin R D, Kirillov A O, et al. Nanoporous high-temperature filters based on Ti–Al ceramic SHS materials. Ceram Int, 2020, 46(14): 23180 doi: 10.1016/j.ceramint.2020.06.098
    [12] Zhang H B, Gao H Y, Liu X L, et al. Reactive synthesis and assessment of porous Fe‒20.5Al‒18Cr intermetallic material:A comparative study with porous FeCrAl material produced from prealloyed powders. Sep Purif Technol, 2019, 220: 152
    [13] Zhang G Y, Chu R, Zhang H, et al. The oxidation mechanism of FeCrAl alloy added with rare earth Y from first-principle study. Adv Mater Res, 2013, 853: 192 doi: 10.4028/www.scientific.net/AMR.853.192
    [14] Dai X F, Lin X D, Zhang J, et al. Research progress of α-α' phase separation of Fe‒Cr‒Al alloys for accident tolerant fuel cladding. Trans Mater Heat Treat, 2021, 42(7): 13

    戴学峰, 林晓冬, 张杰, 等. 事故容错燃料包壳Fe‒Cr‒Al合金α-α′相分离的研究进展. 材料热处理学报, 2021, 42(7): 13
    [15] Gao H Y, He Y H, Zou J, et al. Pore structure control for porous FeAl intermetallics. Intermetallics, 2013, 32: 423 doi: 10.1016/j.intermet.2012.08.030
    [16] Jia W Q, Liu X B, Xu C L, et al. Recent progress on powder metallurgy in preparation of FeCrAl alloy for nuclear fuel cladding. Powder Metall Technol, 2022, 40(1): 22

    贾文清, 刘向兵, 徐超亮, 等. 粉末冶金法制备核燃料包壳FeCrAl合金研究进展. 粉末冶金技术, 2022, 40(1): 22
    [17] He L X, Liu C H, Lin J H, et al. Microstructure, oxidation and corrosion properties of FeCrAl coatings with low Al content prepared by magnetron sputtering for accident tolerant fuel cladding. J Nucl Mater, 2021, 551: 152966 doi: 10.1016/j.jnucmat.2021.152966
    [18] Jiang Y, He Y H, Gao H Y. Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties. J Mater Sci Technol, 2021, 74: 89 doi: 10.1016/j.jmst.2020.10.007
    [19] Yost A R, Erdeniz D, Puente A E P Y, et al. Effect of diffusion distance on evolution of Kirkendall pores in titanium-coated nickel wires. Intermetallics, 2019, 104: 124 doi: 10.1016/j.intermet.2018.10.020
    [20] Gao H Y, He Y H, Zou J, et al. Tortuosity factor for porous FeAl intermetallics fabricated by reactive synthesis. Trans Nonferrous Met Soc China, 2012, 22(9): 2179 doi: 10.1016/S1003-6326(11)61446-5
    [21] Butler T M, Weaver M L. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J Alloys Compd, 2016, 674: 229 doi: 10.1016/j.jallcom.2016.02.257
    [22] Düvel A, Romanova E, Sharifi M, et al. Mechanically induced phase transformation of γ-Al2O3 into α-Al2O3. Access to structurally disordered γ-Al2O3 with a controllable amount of pentacoordinated Al sites. J Phys Chem C, 2011, 115(46): 22770
    [23] Kovarik L, Bowden M, Szanyi J. High temperature transition aluminas in δ-Al2O3/θ-Al2O3 stability range: Review. J Catal, 2021, 393: 357 doi: 10.1016/j.jcat.2020.10.009
    [24] Tolpygo V K, Dryden J R, Clarke D R. Determination of the growth stress and strain in α-Al2O3 scales during the oxidation of Fe–22Cr–4.8Al–0.3Y alloy. Acta Mater, 1998, 46(3): 927 doi: 10.1016/S1359-6454(97)00306-6
    [25] Li X F, Meng C Y, Xu X T, et al. Effect of Al content on high-temperature oxidation behavior and failure mechanism of CrAl-coated zircaloy. Corros Sci, 2021, 192: 109856 doi: 10.1016/j.corsci.2021.109856
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  928
  • HTML全文浏览量:  111
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回