选区激光熔化成形GH4169合金研究现状

郭帅东 卢林 吴文恒 张亮 王继芬 徐啸林

郭帅东, 卢林, 吴文恒, 张亮, 王继芬, 徐啸林. 选区激光熔化成形GH4169合金研究现状[J]. 粉末冶金技术, 2023, 41(5): 449-456, 480. doi: 10.19591/j.cnki.cn11-1974/tf.2021110008
引用本文: 郭帅东, 卢林, 吴文恒, 张亮, 王继芬, 徐啸林. 选区激光熔化成形GH4169合金研究现状[J]. 粉末冶金技术, 2023, 41(5): 449-456, 480. doi: 10.19591/j.cnki.cn11-1974/tf.2021110008
GUO Shuaidong, LU Lin, WU Wenheng, ZHANG Liang, WANG Jifen, XU Xiaolin. Research status of selective laser melting GH4169 alloys[J]. Powder Metallurgy Technology, 2023, 41(5): 449-456, 480. doi: 10.19591/j.cnki.cn11-1974/tf.2021110008
Citation: GUO Shuaidong, LU Lin, WU Wenheng, ZHANG Liang, WANG Jifen, XU Xiaolin. Research status of selective laser melting GH4169 alloys[J]. Powder Metallurgy Technology, 2023, 41(5): 449-456, 480. doi: 10.19591/j.cnki.cn11-1974/tf.2021110008

选区激光熔化成形GH4169合金研究现状

doi: 10.19591/j.cnki.cn11-1974/tf.2021110008
基金项目: 上海市青年科技启明星计划资助项目(20QB1401100)
详细信息
    通讯作者:

    E-mail: lulinws@163.com

  • 中图分类号: TF124; TG142.3

Research status of selective laser melting GH4169 alloys

More Information
  • 摘要: 介绍了选区激光熔化成形GH4169合金存在的球化、孔洞等常见缺陷的形成机理及工艺控制现状,重点分析了激光功率、扫描速率、铺粉厚度等工艺参数对选区激光熔化成形GH4169合金成形件组织性能的影响规律,以及热处理、颗粒增强等组织性能调控手段对选区激光熔化成形GH4169合金组织性能影响。从工艺控制、材料强化设计等方面对选区激光熔化成形GH4169合金进行展望,认为利用选区激光熔化成形技术开展颗粒增强GH4169复合材料的设计与成形是进一步提升选区激光熔化成形GH4169合金性能的有效途径。
  • 图  1  选区激光熔化原理图

    Figure  1.  Schematic diagram of the selective laser melting

    图  2  球化示意图

    Figure  2.  Schematic diagram of the spherification

    图  3  GH4169合金试样在650 ℃应力应变曲线[46]

    Figure  3.  Stress-strain curves of the GH4169 alloy samples at 650 ℃[46]

    图  4  添加不同质量分数TiC增强Inconel 718复合材料拉伸应变应力曲线[51]

    Figure  4.  Tensile strain-stress curves of the Inconel 718 composites doped by TiC particles in different mass fraction[51]

    图  5  GH4169复合材料导热性与能量输入的关系[55]

    Figure  5.  Relationship between the thermal conductivity and energy input of the GH4169 composites[55]

    表  1  选区激光熔化、锻造和铸造成形特点[10,1321]

    Table  1.   Characteristic of SLM, forging, and casting[10,1321]

    优缺点 选区激光熔化 锻造 铸造
    优点 不受几何形状和复杂度的限制,材料利用率较高,近净成形,成形件精度、相对密度较高,冷却速度快,组织较为细小,在室温和高温下力学
    性能优异。
    可大批量生产,成形尺寸较大的工件,孔洞、裂纹缺陷较少,成形质量好,力学性能优异。 可大批量生产,可成形复杂结构件,可制作较高尺寸和低表面粗糙度的工件。
    缺点 能耗较大,成形尺寸有限。会存在球化、微小孔洞、裂纹等缺陷。具有沿沉积方向定向长大的柱状组织。高温度梯度下产生的残余应力。 成形件几何形状受限制,材料利用率低,工艺复杂,周期长,成本高,易形成脆性相。 尺寸精度低,生产周期较长,易产生缩松缩孔等缺陷,易形成较为粗大的晶粒,组织不均匀,易产生大量宏观偏析和有害相。
    下载: 导出CSV
  • [1] Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology. Mach Build Autom, 2013, 42(4): 1

    卢秉恒, 李涤尘. 增材制造(3D打印)技术发展. 机械制造与自动化, 2013, 42(4): 1
    [2] Guo N N, Leu M C. Additive manufacturing: technology, applications and research needs. Front Mech Eng, 2013, 8(3): 215 doi: 10.1007/s11465-013-0248-8
    [3] Zhang X J, Tang S Y, Zhao H Y, et al. Research status and key technologies of 3D printing. J Mater Eng, 2016, 44(2): 122

    张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术. 材料工程, 2016, 44(2): 122
    [4] Li A, Liu X F, Yu B, et al. Key factors and developmental directions with regard to metal additive manufacturing. Chin J Eng, 2019, 41(2): 159

    李昂, 刘雪峰, 俞波, 等. 金属增材制造技术的关键因素及发展方向. 工程科学学报, 2019, 41(2): 159
    [5] Gao Y, Zhang D Y, Cao M, et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process. Mater Sci Eng A, 2019, 767: 138327 doi: 10.1016/j.msea.2019.138327
    [6] Ding R G, Huang Z W, Li H Y, et al. Electron microscopy study of direct laser deposited IN718. Mater Charact, 2015, 106: 324 doi: 10.1016/j.matchar.2015.06.017
    [7] Wang H J, Cui Z W, Sun F, et al. Superalloy GH4169 complicated components prepared by selective laser melting forming technique. Powder Metall Technol, 2016, 34(5): 368

    王会杰, 崔照雯, 孙峰, 等. 激光选区熔化成形技术制备高温合金GH4169复杂构件. 粉末冶金技术, 2016, 34(5): 368
    [8] Holland S, Wang X Q, Chen J, et al. Multiscale characterization of microstructures and mechanical properties of Inconel 718 fabricated by selective laser melting. J Alloys Compd, 2018, 784: 182
    [9] Popovich A A, Sufiiarov V S, Polozov I A, et al. Microstructure and mechanical properties of Inconel 718 produced by SLM and subsequent heat treatment. Key Eng Mater, 2015, 651-653: 665 doi: 10.4028/www.scientific.net/KEM.651-653.665
    [10] Trosch T, Strößner J, Völkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater Lett, 2016, 164: 428 doi: 10.1016/j.matlet.2015.10.136
    [11] Chen F. Study on Microstructures and Mechanical Properties of TiN /Inconel 718 Composites Fabricated by Selective Laser Melting [Dissertation]. Changchun: Jilin University, 2020

    陈飞. 选区激光熔化成形TiN/Inconel 718复合材料组织及力学性能研究[学位论文]. 长春: 吉林大学, 2020
    [12] Strößner J, Terock M, Glatzel U. Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM). Adv Eng Mater, 2015, 17(8): 1099 doi: 10.1002/adem.201500158
    [13] Feng Z. Study on the Microstructure and High Temperature Mechanical Properties of Alloy Processed by SLM [Dissertation]. Beijing: Beijing University of Technology, 2018

    冯喆. 选区激光熔化成形Inconel718合金显微组织和高温力学性能的研究[学位论文]. 北京: 北京工业大学, 2018
    [14] Zhu X C, Wei Q S, Sun C H, Study on microstructures and properties of S136 die steel formed by selective laser melting after heat treatment. Powder Metall Technol, 2019, 37(2): 83

    朱学超, 魏青松, 孙春华. 激光选区熔化成形S136模具钢热处理组织和性能研究. 粉末冶金技术, 2019, 37(2): 83
    [15] Zhang D Y, Gao Y, Cao M, et al. Study on regulation of microstructure and mechanical properties of SLM-processed Inconel 718 alloy. Aerosp Shanghai, 2020, 37(3): 82

    张冬云, 高阳, 曹明, 等. SLM成形Inconel 718合金的组织性能调控研究. 上海航天, 2020, 37(3): 82
    [16] Wu L Z, Wen Y J, Zhang B C, et al. Research status of selective laser melting aluminum alloys, Powder Metall Technol, 2021, 39(6): 549

    吴灵芝, 温耀杰, 张百成, 等. 选区激光熔化铝合金制备研究现状. 粉末冶金技术, 2021, 39(6): 549
    [17] Liu Z C, Wang G W, Xiao X Y, et al. Process optimization of selective laser melting nickel-based superalloy. Powder Metall Technol, 2021, 39(1): 81

    刘泽程, 王国伟, 肖祥友, 等. 选择性激光熔化镍基高温合金的工艺优化. 粉末冶金技术, 2021, 39(1): 81
    [18] Xu Y, Ban L, Xiao Z Y, et al. Process optimization and friction and wear properties of CoCrWMo alloys fabricated by selective laser melting. Powder Metall Technol, 2021, 39(6): 505

    许阳, 班乐, 肖志瑜. 选择性激光熔化成形CoCrWMo合金工艺优化及摩擦磨损性能. 粉末冶金技术, 2021, 39(6): 505
    [19] Yang Z Y, Zhao J Y. Additive Manufacturing and 3D Printing Technology and Applications. Beijing: Tsinghua University Press, 2017

    杨占尧, 赵敬云. 增材制造与3D打印技术及应用. 北京: 清华大学出版社, 2017
    [20] Popovich V A, Borisov E V, Popovich A A, et al. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting. Mater Des, 2017, 131: 12 doi: 10.1016/j.matdes.2017.05.065
    [21] Teng Q, Li S, Wei Q S, et al. Investigation on the influence of heat treatment on Inconel 718 fabricated by selective laser melting: Microstructure and high temperature tensile property. J Manuf Processes, 2021, 61: 35 doi: 10.1016/j.jmapro.2020.11.002
    [22] Li J. Process and Properties of Ni-Based 718 Alloy Formed by Selective Laser Melting [Dissertation]. Harbin: Harbin University of Science and Technology, 2018

    李剑. IN718合金的选区激光熔化成形工艺及性能研究[学位论文]. 哈尔滨: 哈尔滨理工大学, 2018
    [23] Jia Q B, Selective Laser Melting Fabrication of Nickel-Based Superalloys and Its Composites: Process, Microstructure and Property [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015

    贾清波. Ni基高温合金及其复合材料选区激光熔化成形工艺、组织及性能[学位论文]. 南京: 南京航空航天大学, 2015
    [24] Zhang Y, Gu D D, Shen L D, et al. Study on selective laser melting additive manufacturing process of INCONEL Ni-based superalloy. Electromach Mould, 2014(4): 38

    张颖, 顾冬冬, 沈理达, 等. INCONEL系镍基高温合金选区激光熔化增材制造工艺研究. 电加工与模具, 2014(4): 38
    [25] Balbaa M, Mekhiel S, Elbestawi M, et al. On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Mater Des, 2020, 193: 108818 doi: 10.1016/j.matdes.2020.108818
    [26] Moussaoui K, Rubio W, Mousseigne M, et al. Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties. Mater Sci Eng, 2018, 735: 182 doi: 10.1016/j.msea.2018.08.037
    [27] Zhang G H, Guo S Q, Huang S, et al. Relative density of GH4169 superalloy prepared by selective laser melting. Laser Optoelectron Prog, 2020, 57(3): 163

    张国会, 郭绍庆, 黄帅, 等. 选区激光熔化技术制备GH4169合金的致密度研究. 激光与光电子学进展, 2020, 57(3): 163
    [28] Wang H Y, Wang B B, Wang L, et al. Impact of laser scanning speed on microstructure and mechanical properties of Inconel 718 alloys by selective laser melting. China Foundry, 2021, 18(3): 170 doi: 10.1007/s41230-021-9011-7
    [29] Cheng Y. Study of the Residual Stress and Deformation of GH4169 Fabricated by Selective Laser Melting [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2019

    程勇. 激光选区熔化成形GH4169残余应力和变形研究[学位论文]. 武汉: 华中科技大学, 2019
    [30] Lesyk D A, Martinez S, Mordyuk B N, et al. Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress. Surf Coat Technol, 2020, 381: 125136 doi: 10.1016/j.surfcoat.2019.125136
    [31] Lu Y J, Wu S Q, Gan Y L, et al. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt Laser Technol, 2015, 75: 197 doi: 10.1016/j.optlastec.2015.07.009
    [32] Sufiiarov V S, Popovich A A, Borisov E V, et al. The effect of layer thickness at selective laser melting. Proced Eng, 2017, 174: 126 doi: 10.1016/j.proeng.2017.01.179
    [33] Du J Y. Research on Process Experiment of Selective Laser Melting with GH4169 Nickel-Based Alloy Powder [Dissertation]. Taiyuan: North University of China, 2014

    杜胶义. GH4169镍基合金粉末选区激光熔化基础工艺研究[学位论文]. 太原: 中北大学, 2014
    [34] Jia J Y, Liu F C, Liu F G, et al. Porosity defects and tensile property of Inconel 718 superalloy by selective laser melting additive manufacturing. Hot Working Technol, 2020, 49(18): 1

    贾炅昱, 刘奋成, 刘丰刚, 等. 选区激光熔化增材制造Inconel 718合金的孔隙缺陷和拉伸性能. 热加工工艺, 2020, 49(18): 1
    [35] Yang H H, Meng L, Luo S C, et al. Microstructural evolution and mechanical performances of selective laser melting Inconel 718 from low to high laser power. J Alloys Compd, 2020, 828: 154473 doi: 10.1016/j.jallcom.2020.154473
    [36] Wei J F, Wu M P, Han J T. Mechanism of the effect of scanning strategy on the surface quality of Inconel 718 formed by SLM. Appl Laser, 2020, 40(4): 621

    魏建锋, 武美萍, 韩基泰. 扫描策略对选区激光熔化成形Inconel 718表面质量的影响机制. 应用激光, 2020, 40(4): 621
    [37] Choi J P, Shin G H, Yang S, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technol, 2017, 310: 60 doi: 10.1016/j.powtec.2017.01.030
    [38] Liu S Y, Li H Q, Qin C X, et al. The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718. Mater Des, 2020, 191: 108642 doi: 10.1016/j.matdes.2020.108642
    [39] Jia Q B, Gu D D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J Alloys Compd, 2014, 585: 713 doi: 10.1016/j.jallcom.2013.09.171
    [40] Yan A R, Yang T T, Wang Y L, et al. Forming process and high-temperature mechanical properties of variable energy laser selective melting manufacturing IN718 superalloy. Opt Precis Eng, 2015, 23(6): 1695 doi: 10.3788/OPE.20152306.1695

    闫岸如, 杨恬恬, 王燕灵, 等. 变能量激光选区熔化IN718镍基超合金的成形工艺及高温机械性能. 光学精密工程, 2015, 23(6): 1695 doi: 10.3788/OPE.20152306.1695
    [41] Yi J H, Kang J W, Wang T J, et al. Effect of laser energy density on the microstructure, mechanical properties, and deformation of Inconel 718 samples fabricated by selective laser melting. J Alloys Compd, 2019, 786: 481 doi: 10.1016/j.jallcom.2019.01.377
    [42] Zheng M, Wei L, Chen J, et al. On the role of energy input in the surface morphology and microstructure during selective laser melting of Inconel 718 alloy. J Mater Res Technol, 2021, 11: 392 doi: 10.1016/j.jmrt.2021.01.024
    [43] Aydinöz M E, Brenne F, Schaper M, et al. On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading. Mater Sci Eng A, 2016, 669: 246 doi: 10.1016/j.msea.2016.05.089
    [44] Pröbstle M, Neumeier S, Hopfenmüller J, et al. Superior creep strength of a nickel-based superalloy produced by selective laser melting. Mater Sci Eng A, 2016, 674: 299 doi: 10.1016/j.msea.2016.07.061
    [45] Feng K Y, Liu P, Li H X, et al. Microstructure and phase transformation on the surface of Inconel 718 alloys fabricated by SLM under 1050 °C solid solution + double ageing. Vacuum, 2017, 145: 112 doi: 10.1016/j.vacuum.2017.08.044
    [46] Cao M, Zhang D Y, Gao Y, et al. The effect of homogenization temperature on the microstructure and high temperature mechanical performance of SLM-fabricated IN718 alloy. Mater Sci Eng A, 2021, 801: 140427 doi: 10.1016/j.msea.2020.140427
    [47] Yu W H, Sing S L, Chua C K, et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review. Prog Mater Sci, 2019, 104: 330 doi: 10.1016/j.pmatsci.2019.04.006
    [48] Nguyen Q B, Zhu Z, Chua B W, et al. Development of WC-Inconel composites using selective laser melting. Arch Civil Mech Eng, 2018, 18(4): 1410 doi: 10.1016/j.acme.2018.05.001
    [49] Xia M J, Gu D D, Ma C L, et al. Microstructure evolution, mechanical response and underlying thermodynamic mechanism of multi-phase strengthening WC/Inconel 718 composites using selective laser melting. J Alloys Compd, 2018, 747: 684 doi: 10.1016/j.jallcom.2018.03.049
    [50] Gu D D, Zhang H M, Dai D H, et al. Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance. Composites Part B, 2018, 163: 585
    [51] Wang Y C, Shi J, Wang Y. Reinforcing Inconel 718 superalloy by nano-TiC particles in selective laser melting // ASME 2015 International Manufacturing Science Engineering Conference. Charlotte, 2015: 8
    [52] Wang Y C, Shi J, Lu S Q, et al. Selective laser melting of graphene-reinforced Inconel 718 superalloy: evaluation of microstructure and tensile performance. J Manuf Sci Eng, 2017, 139(4): 041005 doi: 10.1115/1.4034712
    [53] Xiao W H, Lu S Q, Wang Y C, et al. Mechanical and tribological behaviors of graphene/Inconel 718 composites. Trans Nonferrous Met Soc China, 2018, 28(10): 1958
    [54] Ho I T, Hsu T H, Chang Y J, et al. Effects of CoAl2O4 inoculants on microstructure and mechanical properties of IN718 processed by selective laser melting. Addit Manuf, 2020, 35: 101328
    [55] Hassanin A E, Scherillo F, Prisco U, et al. Selective laser melting of Cu-inconel 718 powder mixtures. J Manuf Processes, 2020, 59: 679 doi: 10.1016/j.jmapro.2020.10.039
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2044
  • HTML全文浏览量:  575
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 刊出日期:  2023-10-28

目录

    /

    返回文章
    返回