等离子喷涂涂层抗烧蚀性能及微观结构

林冰涛 张保红 唐亮亮 熊宁 张丹华 张蕾

林冰涛, 张保红, 唐亮亮, 熊宁, 张丹华, 张蕾. 等离子喷涂涂层抗烧蚀性能及微观结构[J]. 粉末冶金技术, 2023, 41(3): 282-288. doi: 10.19591/j.cnki.cn11-1974/tf.2021110013
引用本文: 林冰涛, 张保红, 唐亮亮, 熊宁, 张丹华, 张蕾. 等离子喷涂涂层抗烧蚀性能及微观结构[J]. 粉末冶金技术, 2023, 41(3): 282-288. doi: 10.19591/j.cnki.cn11-1974/tf.2021110013
LIN Bingtao, ZHANG Baohong, TANG Liangliang, XIONG Ning, ZHANG Danhua, ZHANG Lei. Ablation resistance properties and microstructure of plasma spraying coatings[J]. Powder Metallurgy Technology, 2023, 41(3): 282-288. doi: 10.19591/j.cnki.cn11-1974/tf.2021110013
Citation: LIN Bingtao, ZHANG Baohong, TANG Liangliang, XIONG Ning, ZHANG Danhua, ZHANG Lei. Ablation resistance properties and microstructure of plasma spraying coatings[J]. Powder Metallurgy Technology, 2023, 41(3): 282-288. doi: 10.19591/j.cnki.cn11-1974/tf.2021110013

等离子喷涂涂层抗烧蚀性能及微观结构

doi: 10.19591/j.cnki.cn11-1974/tf.2021110013
详细信息
    通讯作者:

    E-mail: zhangbaohong@atmcn.com

  • 中图分类号: TQ174.4; TB35

Ablation resistance properties and microstructure of plasma spraying coatings

More Information
  • 摘要: 以45#钢和TC4钛合金为基体材料,采用等离子喷涂方法制备了钨(W)及钨合金涂层,并在不同烧蚀条件下进行了烧蚀实验,比较了涂层的抗烧蚀性能,探讨了涂层烧蚀破坏机理。结果表明:基体材料喷涂W涂层后,提高了抗烧蚀性能。烧蚀温度为2600 ℃时,烧蚀11 s,涂层存在氧化,基本无烧蚀现象;烧蚀温度为3400 ℃时,烧蚀6 s,涂层有了明显的烧蚀,存在基体熔化现象,说明热量传递到基体,导致基体温度超过了自身熔点。W+Al2O3和W+ZrO2复合涂层可减缓热量从涂层表面向基体的传递速率,提高了基体材料的抗烧蚀性能。W+Al2O3和W+ZrO2复合涂层测力曲线呈锯齿状下降,不抗冲刷,但涂层的抗烧蚀时间相对较长。
  • 图  1  喷涂纯W涂层45#钢烧蚀后表面形貌:(a)未烧蚀;(b)2600 ℃、烧蚀6 s;(c)2600 ℃、烧蚀11 s;(d)3400 ℃、烧蚀3 s;(e)3400 ℃、烧蚀6 s

    Figure  1.  Surface morphology of the pure W-coated 45 # steels after ablation: (a) unablated; (b) ablated at 2600 ℃ for 6 s; (c) ablated at 2600 ℃ for 11 s; (d) ablated at 3400 ℃ for 3 s; (e) ablated at 3400 ℃ for 6 s

    图  2  纯W涂层在不同烧蚀情况下微观形貌及元素分布:(a)未烧蚀;(b)2600 ℃、烧蚀11 s;(c)3400 ℃、烧蚀6 s

    Figure  2.  Morphology and element distribution of the pure W coatings under different ablative conditions: (a) unablated; (b) ablated at 2600 ℃ for 11 s; (c) ablated at 3400 ℃ for 6 s

    图  3  不同基体材料及涂层烧蚀表面形貌:(a)45#钢、W涂层;(b)45#钢、W+Al2O3涂层;(c)45#钢、W+ZrO2涂层;(d)钛合金、W+ZrO2涂层

    Figure  3.  Ablative surface morphology of the coatings on the different substrate materials: (a) 45# steels, W coatings; (b) 45# steels, W+Al2O3 coatings; (c) 45# steels, W+ZrO2 coatings; (d) Ti alloys, W+ZrO2 coatings

    图  4  W+ZrO2复合涂层烧蚀后表面X射线衍射图谱

    Figure  4.  XRD patterns of the W+ZrO2 composite coatings after ablation

    图  5  45#钢表面喷涂复合涂层烧蚀后微观形貌及元素分析:(a)W+Al2O3涂层;(b)W+ZrO2涂层

    Figure  5.  Ablative morphology of the composite coatings on 45# steels: (a) W+Al2O3 coating; (b) W+ZrO2 coatings

    图  6  不同涂层材料发动机测力试验曲线:(a)纯W涂层;(b)W+ZrO2涂层;(c)W+Al2O3涂层

    Figure  6.  Dynamometer curves of the engines with the different coatings: (a) pure W coatings; (b) W+ZrO2 coatings; (c) W+Al2O3 coatings

    图  7  不同材料涂层试车后的微观形貌:(a)纯W涂层;(b)W+ZrO2涂层;(c)W+Al2O3涂层

    Figure  7.  Microstructure of different materials coating after test:(a) pure W coating; (b) W+ZrO2 coating; (c) W+Al2O3 coating

    表  1  ZrO2粉末化学成分(质量分数)

    Table  1.   Chemical composition of the ZrO2 powders %

    ZrO2Y2O3SiO2Fe2O3Al2O3TiO2
    92.257.48<0.02<0.02<0.01<0.01
    下载: 导出CSV

    表  2  Al2O3粉末化学成分(质量分数)

    Table  2.   Chemical composition of the Al2O3 powders %

    Al2O3Fe2O3Na2OSiO2
    99.000.070.180.14
    下载: 导出CSV

    表  3  等离子喷涂工艺参数

    Table  3.   Plasma spraying process parameters

    材料Ar流量 / (m3∙h‒1)He流量 / (m3∙h‒1)电流 / A送粉量 / (g∙min‒1)功率 / kW
    纯W涂层2.831.1378049.828
    W+ZrO2涂层2.830.8580040.227
    W+Al2O3涂层2.830.8575034.825
    下载: 导出CSV
  • [1] Ge Y C, Peng K, Yang L, et al. Coating tungsten on C/C–Cu composites surface by plasma spraying. Mater Sci Eng Powder Metall, 2010, 15(2): 136

    葛毅成, 彭可, 杨琳, 等. C/C–Cu复合材料表面等离子喷涂钨涂层. 粉末冶金材料科学与工程, 2010, 15(2): 136
    [2] Liang M D, Yu J P, Zhang X, et al. Progress in ceramic materials for high temperature thermal barrier coatings. Therm Spray Technol, 2013, 5(2): 1

    梁明德, 于继平, 张鑫, 等. 高温热障涂层陶瓷层材料研究进展. 热喷涂技术, 2013, 5(2): 1
    [3] Xu P, Song R G, Wang C. Research progress of atmospheric plasma sprayed zirconia thermal barrier. Hot Working Technol, 2011, 40(12): 114

    徐鹏, 宋仁国, 王超. 大气等离子喷涂氧化锆热障涂层研究进展. 热加工工艺, 2011, 40(12): 114
    [4] Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines. Mater China, 2009, 28(9-10): 18

    郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展. 中国材料进展, 2009, 28(9-10): 18
    [5] Guo H B, Gong S K, Xu H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies. Acta Aeronaut Astronaut Sin, 2014, 35(10): 2722

    郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展. 航空学报, 2014, 35(10): 2722
    [6] Zhang X X, Lin C G, Cui S, et al. Research status of tungsten and its alloy coating. Acta Armament, 2013, 34(3): 365

    张雪辉, 林晨光, 崔舜, 等. 钨及其合金涂层的研究现状. 兵工学报, 2013, 34(3): 365
    [7] Zhou X J, Zhao G, Tian J P. Design of a new type of Nb–W alloy and its high-temperature oxidation resistance coating uesd in the field of spacecraft engine. Chin J Space Sci, 2016, 36(1): 99 doi: 10.11728/cjss2016.01.099

    周小军, 赵刚, 田进鹏. 一种面向航天器发动机的新型铌钨合金制备及其抗氧化涂层设计. 空间科学学报, 2016, 36(1): 99 doi: 10.11728/cjss2016.01.099
    [8] Zhao G, Zhou X J, Tian J P, et al. Coating accumulation on surface of Nb–W alloy used for aerospace engine. Heat Treat Met, 2015, 40(12): 161

    赵刚, 周小军, 田进鹏, 等. 航天发动机用铌钨合金表面涂层堆积. 金属热处理, 2015, 40(12): 161
    [9] Zhang H. Friction and Wear Properties of Tungsten Alloy Coating Deposited on Gun Steel [Dissertation]. Shenyang: Shenyang Ligong University, 2021)

    张贺. 炮钢表面沉积钨合金涂层的摩擦磨损性能研究[学位论文]. 沈阳: 沈阳理工大学, 2021
    [10] Liu J J, Li T H, Hao Z B, et al. Study on structure and performance of plasma-spraying tungsten coatings on carbon-carbon composites. Surf Technol, 2003, 32(3): 28

    刘建军, 李铁虎, 郝志彪, 等. 炭/炭复合材料表面等离子喷涂钨涂层结构与性能研究. 表面技术, 2003, 32(3): 28
    [11] Tang Q, Wu J H, Yan C, et al. Effect of process parameters on properties of atmospheric plasma sprayed Al2O3 coating. Mater Protect, 2019, 52(4): 106

    唐强, 伍建华, 颜超, 等. 大气等离子喷涂工艺参数对Al2O3涂层性能的影响. 材料保护, 2019, 52(4): 106
    [12] Xie J, Xie S, Quan Q R, et al. Metallography technology of plasma sprayed Al2O3 ceramic coating. Heat Treat Met, 2021, 46(4): 210

    解菁, 谢善, 全琼蕊, 等. 等离子喷涂Al2O3陶瓷涂层的显微组织检测技术. 金属热处理, 2021, 46(4): 210
    [13] Zhang W. Progress on zirconia-based ceramics for thermal barrier coatings. Adv Aeronaut Sci Eng, 2018, 9(4): 464

    张巍. 氧化锆基陶瓷热障涂层的研究进展. 航空工程进展, 2018, 9(4): 464
    [14] Sheng X C, Meng J, Yan B, et al. Preparation and oxidation behavior of Si–Ti–Hf high temperature anti-oxidation coatings on Ta–10W alloy. Powder Metall Ind, 2021, 31(2): 23

    盛晓晨, 孟佳, 严彪, 等. 钽钨合金Si–Ti–Hf高温抗氧化涂层的制备及性能研究. 粉末冶金工业, 2021, 31(2): 23
    [15] Yang Y H, Li B Q, Liu W D, et al. Preparation and properties of anti-oxidation coatings of molybdenum-tungsten alloy. Rare Met Mater Eng, 2020, 49(6): 2089

    杨益航, 李保强, 刘文迪, 等. 钼钨合金抗氧化涂层的制备及性能. 稀有金属材料与工程, 2020, 49(6): 2089
    [16] Zhang X F, Ge C C, Li Y J, et al. Experimental study of tungsten and tungsten alloy coating produced by cold gas dynamic spray and tungsten particles calculation and simulation. Acta Phys Sin, 2012, 61(2): 36

    张小锋, 葛昌纯, 李玉杰, 等. 冷动力喷涂法制备钨和钨合金涂层及其涂层的计算模拟. 物理学报, 2012, 61(2): 36
    [17] Han X Y, Liu X L, Wu Z Z, et al. Research progress in refractory metal coatings. Mater Rep, 2020, 34(7): 13146

    韩雪莹, 刘新利, 吴壮志, 等. 含难熔金属涂层的研究进展. 材料导报, 2020, 34(7): 13146
    [18] Chong F L. Spraying parameter optimization of plasma sprayed tungsten coating. Hot Working Technol, 2015, 44(14): 196

    种法力. 钨涂层等离子体喷涂参数优化分析. 热加工工艺, 2015, 44(14): 196
    [19] Du J. Preparation of Tungsten Carbide Based Coatings and Performance of Their Slurry Erosion Resistance and Cavitation [Dissertation]. Yangzhou: Yangzhou University, 2020

    杜晋. 碳化钨基硬质合金涂层的制备及抗冲蚀与空蚀性能研究[学位论文]. 扬州: 扬州大学, 2020
    [20] Fu Q Q, Tong Y P. Fractal character and fracture toughness of plasma sprayed yttria-stabilized zirconia coatings. Powder Metall Technol, 2021, 39(2): 122

    付倩倩, 通雁鹏. 等离子喷涂氧化钇稳定氧化锆涂层的分形特征与断裂韧性. 粉末冶金技术, 2021, 39(2): 122
    [21] Fu Q Q, Tong Y P. Study on particle characteristics and microstructure of La2Ce2O7 coating by atmospheric plasma spraying based on the response surface method. Powder Metall Technol, 2020, 38(5): 332

    付倩倩, 通雁鹏. 基于曲面响应法的大气等离子喷涂La2Ce2O7涂层粒子特性与微观结构研究. 粉末冶金技术, 2020, 38(5): 332
    [22] He M T, Meng H M, Wang Y C, et al. Research and development of advanced thermal barrier coating materials and preparation technology. Powder Metall Technol, 2019, 37(1): 62

    何明涛, 孟惠民, 王宇超, 等. 新型热障涂层材料及其制备技术的研究与发展. 粉末冶金技术, 2019, 37(1): 62
    [23] Ji Z, Wang C Y, Xia Y, et al. The research of YSZ ceramic coating’ s preparation techniques on the surface of etching machine process chamber. Powder Metall Technol, 2015, 33(6): 460

    纪箴, 王聪瑜, 夏洋, 等. 氧化钇稳定氧化锆耐刻蚀涂层的研究现状. 粉末冶金技术, 2015, 33(6): 460
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  63
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 刊出日期:  2023-06-28

目录

    /

    返回文章
    返回