氮化铝陶瓷中氧质量分数及其分布的测定

韩丽辉 张智睿 吴昊阳 秦明礼 陈学娟

韩丽辉, 张智睿, 吴昊阳, 秦明礼, 陈学娟. 氮化铝陶瓷中氧质量分数及其分布的测定[J]. 粉末冶金技术, 2023, 41(2): 97-107. doi: 10.19591/j.cnki.cn11-1974/tf.2021120004
引用本文: 韩丽辉, 张智睿, 吴昊阳, 秦明礼, 陈学娟. 氮化铝陶瓷中氧质量分数及其分布的测定[J]. 粉末冶金技术, 2023, 41(2): 97-107. doi: 10.19591/j.cnki.cn11-1974/tf.2021120004
HAN Lihui, ZHANG Zhirui, WU Haoyang, QIN Mingli, CHEN Xuejuan. Determination of oxygen mass fraction and distribution in aluminum nitride ceramics[J]. Powder Metallurgy Technology, 2023, 41(2): 97-107. doi: 10.19591/j.cnki.cn11-1974/tf.2021120004
Citation: HAN Lihui, ZHANG Zhirui, WU Haoyang, QIN Mingli, CHEN Xuejuan. Determination of oxygen mass fraction and distribution in aluminum nitride ceramics[J]. Powder Metallurgy Technology, 2023, 41(2): 97-107. doi: 10.19591/j.cnki.cn11-1974/tf.2021120004

氮化铝陶瓷中氧质量分数及其分布的测定

doi: 10.19591/j.cnki.cn11-1974/tf.2021120004
基金项目: 河北省省级科技计划资助项目(20311001D)
详细信息
    通讯作者:

    E-mail: hanlihui@metall.ustb.edu.cn

  • 中图分类号: O659.2

Determination of oxygen mass fraction and distribution in aluminum nitride ceramics

More Information
  • 摘要: 氮化铝陶瓷以其优异的导热性能成为集成电路、半导体及大功率器件的重要封装材料,然而杂质氧含量(质量分数)直接影响着氮化铝陶瓷的导热性能。准确测定氮化铝陶瓷内氧含量(质量分数)及其分布十分重要。在惰性熔融红外吸收法基础上,对氮化铝陶瓷中不同形式氧含量分析方法进行了研究。通过步进式升温模式对样品中的表面吸附氧、晶界氧和晶格氧的氧含量进行分开测定,探讨了坩埚、裕料的选择及测试过程对结果的影响,分析了石墨粉含量对晶界氧的释放作用,最终优化了升温程序、加粉顺序以及称样量。通过氮化铝陶瓷样品多次平行试验对测定方法的准确性进行了验证,实测晶界氧和晶格氧含量的相对标准偏差分别为4.5%、8.5%,能够满足相关科研要求。
  • 图  1  氮化铝中氧信号分离示意图

    Figure  1.  Schematic diagram of the oxygen signal separation in aluminum nitride

    图  2  气体流经线路示意图

    Figure  2.  Schematic diagram of the gas flow through the line

    图  3  氮化铝陶瓷微观形貌(a)与物相分析(b)

    Figure  3.  Microstructure (a) and phase composition (b) of the AlN ceramics

    图  4  坩埚外观结构:(a)套坩埚;(b)标准坩埚;(c)高温坩埚

    Figure  4.  Crucible appearance structure: (a) set of internal and external crucible; (b) standard crucible; (c) high temperature crucible

    图  5  三种坩埚所用功率及对应温度曲线:(a)套坩埚;(b)标准坩埚;(c)高温坩埚

    Figure  5.  Power and the corresponding temperature curves of three type crucibles: (a) set of internal and external crucible; (b) standard crucible; (c) high temperature crucible

    图  6  中温段功率对氧氮释放曲线的影响:(a)2300 W;(b)2500 W;(c)2800 W

    Figure  6.  Effect of power on the oxygen and nitrogen release curves at the medium temperature: (a) 2300 W; (b) 2500 W; (c) 2800 W

    图  7  低晶格氧试样高温段氧氮释放曲线:(a)4000 W氧释放曲线;(b)4000 W氮释放曲线;(c)4500 W氧释放曲线;(d)4500 W氮释放曲线

    Figure  7.  Oxygen and nitrogen release curves of the low lattice oxygen samples at the high temperature: (a) oxygen release curve at 4000 W; (b) nitrogen release curve at 4000 W; (c) oxygen release curve at 4500 W; (d) nitrogen release curve at 4500 W

    图  8  加入镍助熔剂时氧氮释放曲线:(a)步进式升温氧释放曲线;(b)步进式升温氮释放曲线;(c)斜率升温氧释放曲线;(d)斜率升温氮释放曲线

    Figure  8.  Oxygen and nitrogen release curve when adding nickel flux: (a) oxygen release curve with the step-up temperature rise; (b) nitrogen release curve with the step-up temperature rise; (c) oxygen release curve with the slope temperature rise; (d) nitrogen release curve with the slope temperature rise

    图  9  无裕料时氧氮释放曲线及坩埚状态:(a)氧;(b)氮;(c)坩埚状态

    Figure  9.  Oxygen and nitrogen release curves and the crucible state without auxiliary materials: (a) oxygen; (b) nitrogen; (c) crucible state

    图  10  裕料选择对氮释放曲线的影响:(a)不加入裕料;(b)加入锡裕料;(c)加入锡铜二元裕料

    Figure  10.  Effect of the auxiliary materials selection on the nitrogen release curves: (a) without auxiliary; (b) with tin auxiliary; (c) with tin and copper auxiliary

    图  11  裕料选择对氧释放曲线的影响及坩埚状态:(a)不加入裕料;(b)加入石墨粉;(c)加入石墨粉与锡铜裕料;(d)坩埚状态

    Figure  11.  Effect of the auxiliary materials selection on the oxygen release curves and the crucible state: (a) without auxiliary; (b) with graphite powder; (c) with graphite powder, tin, and copper auxiliary; (d) crucible state

    图  12  不同裕料加入顺序下的氮分峰曲线::(a)石墨粉-试样-铜锡裕料;(b)试样-石墨粉-铜锡裕料

    Figure  12.  Nitrogen peak curves added with the auxiliary materials in different order: (a) graphite powder-samples-auxiliary; (b) samples-graphite powder-auxiliary

    图  13  氮化铝试样总氧含量(质量分数)测定曲线

    Figure  13.  Total oxygen content (mass fraction) measurement curve of the AlN samples

    图  14  氮化铝陶瓷样品氧含量(质量分数)释放曲线

    Figure  14.  Oxygen content (mass fraction) release curves of the aluminum nitride ceramic samples

    表  1  实验所用设备及辅料信息

    Table  1.   Equipments and the auxiliary materials used in the experiments

    名称型号制造商或品牌
    分析仪TCH600美国LECO
    分析软件Version4.15美国LECO
    计算机Optiplex 330联想
    稳压电源CWY型10KVA交流铁塔
    电子天平赛得利斯
    外部冷却水RW-5000F泰州郁金香
    助熔剂镍篮(502-344)美国LECO
    助熔剂铜屑(9T-1362)美国WELL GROUP
    助熔剂锡屑(9T-1076)美国WELL GROUP
    助熔剂锡片(761-739)美国WELL GROUP
    助熔剂石墨粉(501-073)美国LECO
    试样氮化铝粉末(粒度小于75 μm)北京科技大学新材料技术研究院
    下载: 导出CSV

    表  2  石墨粉对氧氮质量分数的影响

    Table  2.   Influence of graphite powder on the mass fraction of oxygen and nitrogen

    石墨粉量 / g称样量 / g石墨粉与称样量质量比元素质量分数 / %
    表面氧晶界氧晶格氧
    0.09050.02473.60.521940.516740.0347226.4160
    0.03720.02551.50.434880.581820.0390925.3210
    0.03140.02481.30.428690.521700.0355031.0100
    0.02850.02521.10.411580.561480.0391431.6160
    0.02140.02460.90.394850.415200.1099830.2350
    下载: 导出CSV

    表  3  称样量对氧氮质量分数的影响

    Table  3.   Effect of weighing sample on the mass fraction of oxygen and nitrogen

    称样量 / g元素质量分数 / %
    总氧晶格氧
    0.01041.410234.59700.0457
    0.01531.564734.27200.0657
    0.02051.609932.55200.0735
    0.02501.638832.93000.0767
    0.02871.623433.26300.0721
    0.03011.701130.50900.0835
    0.03471.778227.81300.0894
    下载: 导出CSV

    表  4  氮化铝试样氧含量(质量分数)分布测定结果

    Table  4.   Measurement results of the oxygen content distribution (mass fraction) for the AlN samples

    氧质量分数 / % 相对标准偏差,RSD / %
    表面吸附氧晶界氧晶格氧表面吸附氧晶界氧晶格氧
    0.04040.61170.1369 86.04.58.5
    0.01590.59650.1618
    0.01330.62310.1291
    0.00990.65910.1454
    0.00300.58910.1484
    平均值0.0165平均值0.6159平均值0.1443
    下载: 导出CSV
  • [1] Chen L J, Xu X Y, Lei Y H, et al. A novel piezoelectric vibration sensor with aluminum nitride crystal at high temperature. J China Acad Electron Inf Technol, 2020, 15(12): 1212

    陈丽洁, 徐兴烨, 雷亚辉, 等. 新型氮化铝AlN晶体高温压电振动传感器. 中国电子科学研究院学报, 2020, 15(12): 1212
    [2] Zhang Y Q, Yin S Y, Gao X Y, et al. Study on aluminum nitride microwave attenuation ceramics with high thermal conductivity. Rare Met Mater Eng, 2020, 49(2): 655

    张永清, 阴生毅, 高向阳, 等. 新型高热导率氮化铝基微波衰减陶瓷研究. 稀有金属材料与工程, 2020, 49(2): 655
    [3] Zhang J B, Niu T, Cui K, et al. Technology of ENEPEG on AlN HTCC. Electron Mech Eng, 2020, 36(1): 42 doi: 10.19659/j.issn.1008-5300.2020.01.011

    张静波, 牛通, 崔凯, 等. 氮化铝多层共烧陶瓷基板的化学镀镍钯金技术. 电子机械工程, 2020, 36(1): 42 doi: 10.19659/j.issn.1008-5300.2020.01.011
    [4] Sheng P F, Nie G L, Li Y H, et al. Research progress in shaping technology of AlN ceramics with high thermal conductivity. J Ceram, 2020, 41(6): 771 doi: 10.13957/j.cnki.tcxb.2020.06.001

    盛鹏飞, 聂光临, 黎业华, 等. 高导热氮化铝陶瓷成型技术的研究进展. 陶瓷学报, 2020, 41(6): 771 doi: 10.13957/j.cnki.tcxb.2020.06.001
    [5] Nakano H, Watari K, Hayashi H, et al. Microstructural characterization of high-thermal-conductivity aluminum nitride ceramic. J Am Ceram Soc, 2002, 85(12): 3093
    [6] Thomas A, Müller G. Determination of the concentration of oxygen dissolved in the AlN lattice by hot gas extraction from AlN ceramics. J Eur Ceram Soc, 1991, 8(1): 11 doi: 10.1016/0955-2219(91)90087-G
    [7] Zhu Y J, Li S J. Determination of surface oxygen on metal or ceramic powder by pulse-infrared method. Metall Anal, 1996, 16(4): 13 doi: 10.13228/j.issn.1000-7571.1996.04.004

    朱跃进, 李素娟. 脉冲红外法测定金属和陶瓷粉末表面氧的研究. 冶金分析, 1996, 16(4): 13 doi: 10.13228/j.issn.1000-7571.1996.04.004
    [8] Jiang Y F. Determination of oxygen in WC‒Ni3Al by TCH600 oxygen nitrogen hydrogen analyzer. Nonferrous Met Abstr, 2016, 31(1): 182

    蒋亚芳. TCH600氧氮氢仪测定WC‒Ni3Al中氧量. 有色金属文摘, 2016, 31(1): 182
    [9] Lin F, Yang Q Q, Wen Y M, et al. Simultaneous determination of oxygen and nitrogen in aluminum nitride by inert gas fusion infrared thermal conductivity // Award-Winning Proceedings of the 8th Metallurgical Annual Meeting of Beijing Metal Society. Beijing, 2014: 679

    蔺菲, 杨倩倩, 文元梅, 等. 惰气熔融红外热导法同时测定氮化铝中氧和氮 // 北京金属学会第八届冶金年会获奖论文集. 北京, 2014: 679
    [10] Xie J, Zhu Y C, Zhang F J, et al. Influence of crucible on the analysis results of oxygen, nitrogen and hydrogen in superalloy. Metall Anal, 2018, 38(10): 7 doi: 10.13228/j.boyuan.issn1000-7571.010510

    谢君, 朱瑛才, 仉凤江, 等. 坩埚对高温合金中氧氮及氢分析结果的影响. 冶金分析, 2018, 38(10): 7 doi: 10.13228/j.boyuan.issn1000-7571.010510
    [11] Zhang L, Na D, Yin Z H, et al. Determination of oxygen in lanthanum-cerium alloy by impulse fusion-infrared absorption method. Metall Anal, 2020, 40(6): 8 doi: 10.13228/j.boyuan.issn1000-7571.11047

    张琳, 那铎, 尹志华, 等. 脉冲熔融-红外吸收法测定镧铈合金中氧. 冶金分析, 2020, 40(6): 8 doi: 10.13228/j.boyuan.issn1000-7571.11047
    [12] Li Y, Wang Q. Study on determination method of oxygen content in aluminum vanadium alloy. Chin J Anal Lab, 2010, 29(Suppl 1): 331 doi: 10.13595/j.cnki.issn1000-0720.2010.0445

    李岩, 王强. 铝钒合金中氧含量测定方法的研究. 分析试验室, 2010, 29(增刊 1): 331 doi: 10.13595/j.cnki.issn1000-0720.2010.0445
    [13] Wu B, Liu X P. Determination of nitrogen in nitrided managanese by manual mode of nitrogen/oxygen analytical instrument. Angang Technol, 2007(1): 49 doi: 10.3969/j.issn.1006-4613.2007.01.014

    武斌, 刘小平. 氧氮分析仪手动模式测定氮化锰中的氮. 鞍钢技术, 2007(1): 49 doi: 10.3969/j.issn.1006-4613.2007.01.014
    [14] Wang S W. Nitrogen content in steel was analyzed by oxygen and nitrogen meter. Shandong Chem Ind, 2020, 49(24): 106 doi: 10.3969/j.issn.1008-021X.2020.24.041

    王神武. 氧氮仪下进样检测钢中氮含量. 山东化工, 2020, 49(24): 106 doi: 10.3969/j.issn.1008-021X.2020.24.041
    [15] Zhang Z R, Qin M L, Wu H Y, et al. Research progress and preparation method of aluminum nitride powder. Powder Metall Technol, 2021, 393(4): 373

    张智睿, 秦明礼, 吴昊阳, 等. 氮化铝粉末制备方法及研究进程. 粉末冶金技术, 2021, 393(4): 373
    [16] Lan J, Ma S Q, Li Y K, et al. Progress in preparation and application of aluminum nitride powder. J Ceram, 2021, 42(1): 44 doi: 10.13957/j.cnki.tcxb.2021.01.004

    蓝键, 马思琪, 李邑柯, 等. 氮化铝粉末制备与应用研究进展. 陶瓷学报, 2021, 42(1): 44 doi: 10.13957/j.cnki.tcxb.2021.01.004
    [17] Zhuang A C, Xiao H X, Zhang S. Progress and present situation of standard analysis techniques for oxygen and nitrogen in inorganic materials. Metall Anal, 2020, 40(8): 30 doi: 10.13228/j.boyuan.issn1000-7571.011057

    庄艾春, 肖红新, 张胜. 无机材料氧氮标准分析技术进展及现状. 冶金分析, 2020, 40(8): 30 doi: 10.13228/j.boyuan.issn1000-7571.011057
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  698
  • HTML全文浏览量:  155
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-09
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回