陶瓷颗粒增强扩散合金化钢复合材料的微观结构和力学性能

刘增林 韩伟 王彦康 王涛 吕伟龙

刘增林, 韩伟, 王彦康, 王涛, 吕伟龙. 陶瓷颗粒增强扩散合金化钢复合材料的微观结构和力学性能[J]. 粉末冶金技术, 2022, 40(6): 527-534. doi: 10.19591/j.cnki.cn11-1974/tf.2021120007
引用本文: 刘增林, 韩伟, 王彦康, 王涛, 吕伟龙. 陶瓷颗粒增强扩散合金化钢复合材料的微观结构和力学性能[J]. 粉末冶金技术, 2022, 40(6): 527-534. doi: 10.19591/j.cnki.cn11-1974/tf.2021120007
LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. doi: 10.19591/j.cnki.cn11-1974/tf.2021120007
Citation: LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. doi: 10.19591/j.cnki.cn11-1974/tf.2021120007

陶瓷颗粒增强扩散合金化钢复合材料的微观结构和力学性能

doi: 10.19591/j.cnki.cn11-1974/tf.2021120007
详细信息
    通讯作者:

    E-mail: lgliuzenglin@163.com

  • 中图分类号: TF125

Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles

More Information
  • 摘要: 采用传统粉末冶金工艺制备了陶瓷颗粒增强Fe‒0.5Mo‒1.75Ni‒1.5Cu‒0.7C扩散合金化钢复合材料,选用的陶瓷颗粒为SiC、TiC和TiB2。采用光学显微镜和扫描电子显微镜观察了烧结材料微观结构,并对烧结材料的硬度、强度和摩擦磨损性能进行了测试。结果表明,由于SiC和TiB2与基体的化学相容性好,陶瓷颗粒与基体界面结合良好;由于TiC颗粒具有极高的化学稳定性,TiC颗粒与基体界面结合情况不理想。随着陶瓷相含量(质量分数)的增加,添加SiC和TiC的烧结试样相对密度降低;添加TiB2的烧结试样相对密度先增加后降低,当添加TiB2质量分数为0.9%时达到最大值。随着陶瓷含量增加,添加SiC和TiB2烧结试样的硬度增大,当陶瓷相质量分数超过1.2%时,硬度增加缓慢;添加TiC烧结试样的硬度先增加后降低,当添加TiC质量分数为0.9%时达到最大值。随着陶瓷相含量增加,添加SiC和TiC烧结试样的强度降低,少量添加SiC对强度没有明显损害;添加TiB2烧结试样的强度先增加后降低,当添加TiB2质量分数为0.6%时达到最大值(971.7MPa),比基体提高了14.1%以上。添加陶瓷相对烧结钢性能的积极影响依次是TiB2、SiC和TiC。
  • 图  1  添加不同类型陶瓷颗粒的扩散合金化钢组织:(a)基体;(b)SiC 0.9%;(c)TiC 0.9%;(d)TiB2 0.9%

    Figure  1.  Microstructure of the diffusion alloyed steels reinforced by the different types ceramic particles: (a) matrix; (b) SiC 0.9%; (c) TiC 0.9%; (d) TiB2 0.9%

    图  4  陶瓷颗粒质量分数对颗粒强化扩散合金化钢硬度的影响

    Figure  4.  Effect of the ceramic particle mass fraction on the hardness of the diffusion alloyed steels

    图  5  陶瓷颗粒质量分数对扩散合金化钢抗拉强度的影响

    Figure  5.  Effect of the ceramic particle mass fraction on the tensile strength of the diffusion alloyed steels

    图  6  不同类型陶瓷颗粒增强扩散合金化钢断口形貌:(a)基体;(b)TiC 0.9%;(c)SiC 0.9%;(d)TiB2 0.9%

    Figure  6.  Fracture morphology of the diffusion alloyed steels reinforced by the different types ceramic particles: (a) matrix; (b) TiC 0.9%; (c) SiC 0.9%; (d) TiB2 0.9%

    表  1  LAP100.29D1扩散型合金钢粉化学成分(质量分数)

    Table  1.   Chemical composition of the LAP100.29D1 diffusion alloyed steel powders %

    C Si Mn P S Ni Mo Cu HL
    0.010 0.020 0.120 0.005 0.005 1.750 0.500 1.500 0.150
    下载: 导出CSV

    表  2  陶瓷颗粒增强扩散合金钢成分组成(质量分数)

    Table  2.   Composition of the ceramic particle reinforced diffusion alloyed steels %

    陶瓷颗粒(SiC、TiC、TiB2 C 润滑剂 LAP100.29D1
    0、0.3、0.6、0.9、1.2、1.5 0.7 0.7 余量
    下载: 导出CSV

    表  3  陶瓷颗粒增强扩散合金化钢摩擦磨损减重(质量分数)

    Table  3.   Weight lost of the ceramic particles reinforced diffusion alloyed steels %

    增强颗粒 磨损量 / mg
    不添加增强颗粒 5.9±0.18
    SiC(0.9%) 4.0±0.16
    TiB2(0.9%) 3.6±0.11
    下载: 导出CSV
  • [1] Ye X, Tu H J, Qiu Z W, et al. Effect of WC content on pore morphology and properties of Fe‒1.5Cu‒1.8Ni‒0.5Mo‒1C powder metallurgy composites. Hot Working Technol, 2019, 48(22): 89

    叶璇, 涂华锦, 邱志文, 等. WC含量对Fe‒1.5Cu‒1.8Ni‒0.5Mo‒1C粉末冶金复合材料的孔隙形貌与性能的影响. 热加工工艺, 2019, 48(22): 89
    [2] Ru J J, He H. Preparation methods and research progress of ceramic particle reinforced metal matrix composites. Technol Innov Appl, 2019, 19(2): 116 doi: 10.3969/j.issn.2095-2945.2019.02.048

    汝娟坚, 贺函. 陶瓷颗粒增强金属基复合材料的制备方法及研究进展. 科技创新与应用, 2019, 19(2): 116 doi: 10.3969/j.issn.2095-2945.2019.02.048
    [3] Pang Y D. Preparation and Properties of TiC/NbC Ceramic Reinforced Fe Matrix Composites [Dissertation]. Baotou: Inner Mongolia University of Science and Technology, 2020

    庞雅丹. TiC/NbC陶瓷颗粒增强Fe基复合材料的制备及工艺研究[学位论文]. 包头: 内蒙古科技大学, 2020
    [4] Cao J X, Jin J F, Cao J H, et al. Wear resistance of iron matrix composites reinforced by mixed-type particles. J Mater Eng, 2017, 45(8): 62 doi: 10.11868/j.issn.1001-4381.2015.001136

    曹建新, 金剑锋, 曹敬袆, 等. 不同类型颗粒混合增强铁基复合材料的磨损性能. 材料工程, 2017, 45(8): 62 doi: 10.11868/j.issn.1001-4381.2015.001136
    [5] Zhuang W B, Han M M, Liu J F, et al. Research progress of ceramic particle reinforced iron matrix composites. Hot Working Technol, 2018, 47(4): 40 doi: 10.14158/j.cnki.1001-3814.2018.04.009

    庄伟斌, 韩明明, 刘敬福, 等. 陶瓷颗粒增强铁基复合材料的研究进展. 热加工工艺, 2018, 47(4): 40 doi: 10.14158/j.cnki.1001-3814.2018.04.009
    [6] Tan A S. Research on Mechanical and Tribological Properties of Aluminium Matrix Composites Reinforced with Hybrid SiC Microparticles and TiB2 Nanoparticles [Dissertation]. Changsha: Hunan University, 2017

    谭傲霜. SiC/TiB2颗粒颗粒混杂增强铝基复合材料力学及摩擦磨损性能研究[学位论文]. 长沙: 湖南大学, 2017
    [7] Deirmina F, Pellizzari M. Production and characterization of a tool steel-PSZ composite by mechanical alloying and spark plasma sintering. J Alloys Compd, 2017, 709: 742 doi: 10.1016/j.jallcom.2017.03.203
    [8] Guan D D. Preparation and Properties of Ceramic Particle Reinforced 316L Stainless Steel Matrix Composites by Powder Metallurgy [Dissertation]. Beijing: Beijing University of Science and Technology, 2018

    管丹丹. 粉末冶金法制备陶瓷颗粒增强316L不锈钢基复合材料及其性能[学位论文]. 北京: 北京科技大学, 2018
    [9] Kumar A, Banerjee M K, Pandel U. Development of a novel MWCNT reinforced iron matrix nanocomposite through powder metallurgy route. Powder Technol, 2018, 331: 41 doi: 10.1016/j.powtec.2018.03.009
    [10] Han M M, Liu J F, Zhuang W B, et al. Study on thermal fatigue properties of SiCp/Fe composites. Hot Working Technol, 2019, 48(16): 89

    韩明明, 刘敬福, 庄伟彬, 等. SiCp/Fe复合材料的热疲劳性能研究. 热加工工艺, 2019, 48(16): 89
    [11] Zhong X Y, Zhen M H, Qiu Y, et al. Electroless copper plating on α-SiC powder and its effect on the properties of α-SiC/Fe composites. Surf Technol, 2018, 47(3): 244 doi: 10.16490/j.cnki.issn.1001-3660.2018.03.039

    种详远, 甄明晖, 仇溢, 等. α-SiC粉体化学镀铜及其对铁基复合材料性能的影响. 表面技术, 2018, 47(3): 244 doi: 10.16490/j.cnki.issn.1001-3660.2018.03.039
    [12] Gao Q C, Dai Q F, Wang B B, et al. Effect of Ni-coated SiC particles on mechanical properties of SiC(Ni)/Fe composite. Adv Ceram, 2017, 38(2): 108 doi: 10.16253/j.cnki.37-1226/tq.2016.11.003

    高前程, 代巧飞, 王彬彬, 等. Ni包裹SiC对SiC(Ni)/Fe复合材料性能的影响. 现代技术陶瓷, 2017, 38(2): 108 doi: 10.16253/j.cnki.37-1226/tq.2016.11.003
    [13] Guo Y B. Study on Mechanical Properties and Dry Friction and Wear Behavior of TiB2 Particle Reinforced Iron Matrix Composites [Dissertation]. Chengdu: Southwest Jiaotong University, 2018

    郭远博. 硼化钛颗粒增强铁基复合材料的力学性能及干摩擦磨损行为研究[学位论文]. 成都: 西南交通大学, 2018
    [14] Fan S Z, Zhong L S, Cheng S L, et al. Research status of in-situ titanium carbide particle reinforced steel matrix composite. Hot Working Technol, 2015, 44(10): 16 doi: 10.14158/j.cnki.1001-3814.2015.10.004

    樊少忠, 钟黎声, 程仕李, 等. 原位制备碳化钛颗粒增强钢铁基复合材料研究现状. 热加工工艺, 2015, 44(10): 16 doi: 10.14158/j.cnki.1001-3814.2015.10.004
    [15] Tang W M, Zheng Z X, Ding H F, et al. A study of solid state reaction between silicon carbide and iron. Mater Chem Phys, 2002, 74(3): 258 doi: 10.1016/S0254-0584(01)00480-1
    [16] He Q Q, Li P M, Yuan Y, et al. Microstructure and mechanical properties of ceramic particle reinforced powder metallurgy Fe‒2Cu‒0.6C composites. Powder Metall Technol, 2019, 37(1): 11

    何勤求, 李普明, 袁勇, 等. 陶瓷颗粒增强粉末冶金Fe‒2Cu‒0.6C复合材料的微观结构和力学性能. 粉末冶金技术, 2019, 37(1): 11
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  536
  • HTML全文浏览量:  77
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-19
  • 刊出日期:  2022-12-23

目录

    /

    返回文章
    返回