核反应堆用钼铼合金结构材料研究进展

曾毅 孙院军 安耿 丁向东 丘玺 王娜 孙军

曾毅, 孙院军, 安耿, 丁向东, 丘玺, 王娜, 孙军. 核反应堆用钼铼合金结构材料研究进展[J]. 粉末冶金技术, 2023, 41(4): 307-314. doi: 10.19591/j.cnki.cn11-1974/tf.2021120013
引用本文: 曾毅, 孙院军, 安耿, 丁向东, 丘玺, 王娜, 孙军. 核反应堆用钼铼合金结构材料研究进展[J]. 粉末冶金技术, 2023, 41(4): 307-314. doi: 10.19591/j.cnki.cn11-1974/tf.2021120013
ZENG Yi, SUN Yuanjun, AN Geng, DING Xiangdong, QIU Xi, WANG Na, SUN Jun. Research progress of Mo−Re alloy structural materials usedfor nuclear reactors[J]. Powder Metallurgy Technology, 2023, 41(4): 307-314. doi: 10.19591/j.cnki.cn11-1974/tf.2021120013
Citation: ZENG Yi, SUN Yuanjun, AN Geng, DING Xiangdong, QIU Xi, WANG Na, SUN Jun. Research progress of Mo−Re alloy structural materials usedfor nuclear reactors[J]. Powder Metallurgy Technology, 2023, 41(4): 307-314. doi: 10.19591/j.cnki.cn11-1974/tf.2021120013

核反应堆用钼铼合金结构材料研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2021120013
基金项目: 陕西省2020年创新能力支撑项目(2020KJXX-032);陕西省科技重大专项项目(2020ZDZX04-02-01);中核集团领创科研项目基金资助项目
详细信息
    通讯作者:

    E-mail: sunyuanjun@xjtu.edu.cn

  • 中图分类号: TG146.4

Research progress of Mo−Re alloy structural materials usedfor nuclear reactors

More Information
  • 摘要: 难熔金属钼具有熔点高、高温力学性能优异、导热性良好等特点,加之其良好的抗辐照肿胀能力及与液态金属的相容性,使其成为第四代高温核裂变反应堆、聚变堆等先进核反应堆重要的候选材料,用以满足高温、强腐蚀、大剂量辐照等苛刻环境下结构件的制备需求。但金属钼具有本征室温脆性、加工难和焊接性能差等缺点,严重限制了其应用推广。在金属钼中加入铼元素,形成“铼效应”,不仅可以显著改善钼的室温塑性和加工性能,降低塑-脆转变温度,而且还能提升材料焊接性能和抗蠕变性能,已经成为先进核反应堆结构材料的研究热点。本文从钼铼合金的成分设计、材料制备、焊接性能及核环境应用评价研究四个方面总结了国内外近年来的研究进展,分析了钼铼合金在先进反应堆工程应用中存在的问题,以期为高性能钼铼合金结构材料的开发提供参考。
  • 图  1  Mo−Re二元相图[7]

    Figure  1.  Binary Phase diagram of Mo−Re[7]

    图  2  不同成分再结晶态Mo−Re合金在经过1072 K、18 dpa辐照后的显微组织[37]

    Figure  2.  Micrograghs of the recrystallized Mo−Re irradiated at 1072 K up to 18 dpa[37]

    图  3  不同温度中子辐照后Mo−Re合金拉伸性能[7]

    Figure  3.  Temperature-dependent tensile properties of the Mo−Re alloys after the neutron irradiation[7]

  • [1] Wolfgang H. Materials for Nuclear Plants. 2nd Ed. Transl by Shanghai Nuclear Engineering Research and Design Institute. Shanghai: Shanghai Science and Technology Press, 2017

    沃尔夫冈. 核电厂材料. 2版. 上海核工程研究设计院译. 上海: 上海科学技术出版社, 2017
    [2] Yang J, Yang Z C, Xu L J, et al. Review of 2017 nuclear energy technology hotspots. Sci Technol Rev, 2018, 36(1): 31

    杨军, 杨章灿, 徐乐瑾, 等. 2017年核能科技热点回眸. 科技导报, 2018, 36(1): 31
    [3] Busby J T, Leonard K J. Space fission reactor structural materials: Choices past, present, and future. JOM, 2007, 59(4): 20 doi: 10.1007/s11837-007-0049-9
    [4] Jaffee R I, Sims C T, Harwood J J. The effect of rhenium on the fabric ability and ductility of molybdenum and tungsten // 3rd Plansee Seminar. Vienna, 1959: 664
    [5] Wadsworth J, Nith T G, Stephens J J. Dilute Mo−Re alloys—A critical evaluation of their comparative mechanical properties. Scr Metall, 1986, 20(5): 637 doi: 10.1016/0036-9748(86)90481-3
    [6] Tyumentsev A N, Levitskii A D, Freze N I, et al. Temperature characteristics of the mechanical properties and of the dislocation structure of molybdenum-rhenium alloys. Sov Phys J, 1975, 18(12): 1668 doi: 10.1007/BF00892783
    [7] Busby J T, Ohriner E K, Snead L L, et al. Molybdenum-rhenium alloys for spacecraft reactor applications // Proceedings of the Space Nuclear Conference 2005. California, 2005: 1184
    [8] Dong D, Huang H T, Xiong N, et al. Application of molybdenum and molybdenum alloy in nuclear reactor. China Molybdenum Ind, 2018, 42(4): 6 doi: 10.13384/j.cnki.cmi.1006-2602.2018.04.002

    董帝, 黄洪涛, 熊宁, 等. 钼及钼合金在核反应堆中的应用. 中国钼业, 2018, 42(4): 6 doi: 10.13384/j.cnki.cmi.1006-2602.2018.04.002
    [9] Chen C, Wang M P, Tan W, et al. Study on preparation of molybdenum−rhenium alloys by powder metallurgy methods. Mater Rev, 2008, 22(5): 74 doi: 10.3321/j.issn:1005-023X.2008.05.018

    陈畅, 汪明朴, 谭望, 等. 粉末冶金方法制备钼铼合金的研究. 材料导报, 2008, 22(5): 74 doi: 10.3321/j.issn:1005-023X.2008.05.018
    [10] Zinkle S J, Ott L J, Ingersoll D T, et al. Overview of materials technologies for space nuclear power and propulsion // Proceedings of Space Technology and Applications International Forum. Albuquerque, 2002: 1063
    [11] Ashcroft J. Documentation of naval reactors papers and presentations for the space technology and international forum (STAIF) 2006 [J/OL]. UNT Digital Library Online (2006-04-10) [2022-07-01]. https://digital.library.unt.edu/ark:/67531/metadc892374/
    [12] Jahshan S N, Borkowski J A. A modular gas-cooled cermet reactor system for planetary base power. Symp Space Nucl Power Propul, 1993(1): 641
    [13] Kambe M, Tsunoda H, Mishima K, et al. Rapid-L operator-free fast reactor concept without any control rods. Nucl Technol, 2003, 143(1): 11 doi: 10.13182/NT03-A3394
    [14] Liu R Z, An G, Yang Q L, et al. Microstructures and mechanical properties of Mo−Re−La alloy. Powder Metall Technol, 2018, 36(6): 30 doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.005

    刘仁智, 安耿, 杨秦莉, 等. 钼−铼−镧合金微观组织及力学性能研究. 粉末冶金技术, 2018, 36(6): 30 doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
    [15] Mueller A J, Bianco R, Buckman R W. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum–rhenium alloys. Int J Refract Met Hard Mater, 1999, 18(4-5): 205
    [16] Tyumentsev A N, Manako V V, Korotaev A D. Influence of the temperature and structural state on the systematic features of plastic deformation in Mo−Re-based alloys. Russ Phys J, 1994, 37(12): 1193 doi: 10.1007/BF00569803
    [17] Liu S, Cao Y, Shu J B. Study of mechanical behavior of low rhenium molybdenum alloys. Rare Met Cemented Carb, 1999(3): 33

    刘沙, 曹昱, 舒金波. 低铼钼合金力学性能的研究. 稀有金属与硬质合金, 1999(3): 33
    [18] Osadnik M, Wrona A, Lis M, et al. Plasma-sprayed Mo−Re coatings for glass industry applications. Surf Coat Technol, 2017, 318: 349 doi: 10.1016/j.surfcoat.2017.01.056
    [19] Mitchell D, Todd L, Jim D, et al. Powder Materials: Current Research and Industrial Practices III. Chicago: John Wiley & Sons Press, 2014
    [20] Cheetham A K. Low-temperature preparation of refractory alloys. Nature, 1980, 288: 469 doi: 10.1038/288469a0
    [21] Liu S, Zhang C Z, Zhao L Z, et al. Study on mixing method of molybdenum−rhenium powder. Rare Met Mater Eng, 1985(5): 33

    刘沙, 张传忠, 赵连仲, 等. 钼−铼粉末混合方法的研究. 稀有金属材料与工程, 1985(5): 33
    [22] Garin J L, Mannheim R L. Manufacturing of Mo−25Re and Mo−50Re alloys by means of powder sintering at medium temperatures. Adv Manuf Processes, 1998, 13(5): 731 doi: 10.1080/10426919808935295
    [23] Osadnik M, Staszewski M, Czepelak M. Phase transformations in Mo−Re alloys produced by pressure sintering. Solid State Phenom, 2010, 163: 191 doi: 10.4028/www.scientific.net/SSP.163.191
    [24] Mannheim R L, Garin J L. Structural identification of phases in Mo–Re alloys within the range from 5 to 95% Re. J Mater Process Technol, 2003, 143-144: 533 doi: 10.1016/S0924-0136(03)00342-X
    [25] Carlen J C, Bryskin B D. Cold-forming mechanisms and work-hardening rate for rhenium. Int J Refract Met Hard Mater, 1992, 11(6): 343 doi: 10.1016/0263-4368(92)90088-J
    [26] Mannheim R L, Garin J L. Strain hardening of rhenium and two typical molybdenum−rhenium alloys manufactured by powder sintering. Z Metallkd, 2000, 91: 848
    [27] Feli V M, Li J H. Extrusion method of Mo−Re alloy pipe. Tungsten Molybdenum Mater, 1997(2): 6

    Feli V M, 李俊怀. 钼−铼合金管的挤压方法. 钨钼材料, 1997(2): 6
    [28] Lü Z, Xing Y H. Study on the Mo−Re alloy sheet. China Molybdenum Ind, 1992(1): 18

    吕忠, 邢英华. 钼铼合金板材研究. 中国钼业, 1992(1): 18
    [29] Zhang J L, Li Z K, Fu J, et al. The effect of cross rolling and annealing on the deep drawability of Mo−Re alloys foil. China Molybdenum Ind, 2009(3): 37 doi: 10.3969/j.issn.1006-2602.2009.03.010

    张军良, 李中奎, 付洁, 等. 交叉轧制及退火对钼铼合金箔材深冲性能的影响. 中国钼业, 2009(3): 37 doi: 10.3969/j.issn.1006-2602.2009.03.010
    [30] Morito F. Effect of heat treatment on mechanical behavior of electron beam welded sintered molybdenum. J Nucl Mater, 1989, 165(2): 142 doi: 10.1016/0022-3115(89)90242-0
    [31] Morito F. Characteristics of EB-weldable molybdenum and Mo−Re alloys. JOM, 1993, 45(6): 54 doi: 10.1007/BF03223314
    [32] Wu L, Xia C Z, Liu P. Research status of molybdenum rhenium alloy welding technology. Weld Join, 2017(2): 4 doi: 10.3969/j.issn.1001-1382.2017.02.003

    吴磊, 夏春智, 刘鹏. 钼铼合金焊接技术研究现状. 焊接, 2017(2): 4 doi: 10.3969/j.issn.1001-1382.2017.02.003
    [33] Zhang L L, Zhang L J, Long J, et al. Effects of titanium on grain boundary strength in molybdenum laser weld bead and formation and strengthening mechanisms of brazing layer. Mater Des, 2019(1): 22
    [34] Felix V M, Wells D A. Friction Welding Molybdenum−Rhenium Alloy: US Patent, US5261592A. 1993-11-16
    [35] Fabritsiev S A, Gosudarenkova V A, Potapova V A, et al. Effects of neutron irradiation on physical and mechanical properties of Mo−Re alloys. J Nucl Mater, 1992(2): 426
    [36] Evans J H. Radiation-induced shrinkage of voids in molybdenum and TZM. Nature, 1979, 278: 728 doi: 10.1038/278728a0
    [37] Nemoto Y, Hasegawa A, Satou M, et al. Microstructural development and radiation hardening of neutron irradiated Mo–Re alloys. J Nucl Mater, 2004, 324(1): 63
    [38] Busby J T, Leonard K J, Zinkle S J. Radiation-damage in molybdenum–rhenium alloys for space reactor applications. J Nucl Mater, 2007, 366(3): 388 doi: 10.1016/j.jnucmat.2007.03.028
    [39] Hasegawa A, Ueda K, Satou M, et al. Neutron irradiation embrittlement of molybdenum rhenium alloys and their improvement by heat treatment. J Nucl Mater, 1998, 258(4): 902
    [40] Cockeram B V, Smith R W, Hashimoto N, et al. The swelling, microstructure, and hardening of wrought LCAC, TZM, and ODS molybdenum following neutron irradiation. J Nucl Mater, 2011, 418(1-3): 121 doi: 10.1016/j.jnucmat.2011.05.055
    [41] King J C, El-Genk M S. Review of refractory materials for alkali metal thermal-to-electric conversion cells. J Propul Power, 2012, 17(3): 547
    [42] Devan J H, Litman A P, Distefano J R, et al. Lithium and potassium corrosion studies with refractory metals. Alk Met, 1967(3): 12
    [43] Katsuta H, Furukawa K. Air contamination effects on the compatibility of liquid lithium with molybdenum; TZM, niobium, stainless steels, nickel and hastelloy N in stainless-steel vessels at 600 ℃. J Nucl Mater, 1977, 71(1): 95 doi: 10.1016/0022-3115(77)90192-1
    [44] Distefano J R. Review of alkali metal and refractory alloy compatibility for Rankine cycle applications. J Mater Eng, 1989, 11(3): 215 doi: 10.1007/BF02834839
    [45] Saito J I, Morinaga M, Kano S, et al. Corrosion behavior of Mo–Re based alloys in liquid Li. J Nucl Mater, 1999, 264(1-2): 206 doi: 10.1016/S0022-3115(98)00459-0
    [46] Carlen J C, Bryskin B D. Rhenium—A unique rare metal. Adv Manuf Processes, 2007, 9(6): 1087
    [47] Zhu Z J, Yang W, Shi J J, et al. A preliminary study of oxidation behavior of Mo−50Re alloy at different temperature using positron annihilation lifetime spectroscopy. Defect Diffus Forum, 2016(373): 134
    [48] Distefano J R, Chitwood L D. Oxidation of Mo−Re at reduced oxygen pressures // Proceedings of Space Technology and Applications International Forum. Albuquerque, 2001: 1076
    [49] Wilkes K E, Williams R K, Moore J P, et al. Thermophysical properties of Mo−47.5wt.% Re alloy // The 26th International Thermal Conductivity Conference (ITCC) and The 14th International Thermal Expansion Symposium (ITES). Massachusetts, 2001: 179
  • 加载中
图(3)
计量
  • 文章访问数:  1883
  • HTML全文浏览量:  275
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-09
  • 刊出日期:  2023-08-29

目录

    /

    返回文章
    返回