航空用SiCp/Al复合材料热变形行为与环轧工艺研究

李宏伟 王若达 魏少华 杨志宇 聂俊辉

李宏伟, 王若达, 魏少华, 杨志宇, 聂俊辉. 航空用SiCp/Al复合材料热变形行为与环轧工艺研究[J]. 粉末冶金技术, 2022, 40(6): 541-548. doi: 10.19591/j.cnki.cn11-1974/tf.2022010001
引用本文: 李宏伟, 王若达, 魏少华, 杨志宇, 聂俊辉. 航空用SiCp/Al复合材料热变形行为与环轧工艺研究[J]. 粉末冶金技术, 2022, 40(6): 541-548. doi: 10.19591/j.cnki.cn11-1974/tf.2022010001
LI Hong-wei, WANG Ruo-da, WEI Shao-hua, YANG Zhi-yu, NIE Jun-hui. Hot deformation behavior and ring rolling process of SiCp/Al composites used in aircraft manufacturing[J]. Powder Metallurgy Technology, 2022, 40(6): 541-548. doi: 10.19591/j.cnki.cn11-1974/tf.2022010001
Citation: LI Hong-wei, WANG Ruo-da, WEI Shao-hua, YANG Zhi-yu, NIE Jun-hui. Hot deformation behavior and ring rolling process of SiCp/Al composites used in aircraft manufacturing[J]. Powder Metallurgy Technology, 2022, 40(6): 541-548. doi: 10.19591/j.cnki.cn11-1974/tf.2022010001

航空用SiCp/Al复合材料热变形行为与环轧工艺研究

doi: 10.19591/j.cnki.cn11-1974/tf.2022010001
详细信息
    通讯作者:

    wangruoda@ccidthinktank.com

  • 中图分类号: TG146.2

Hot deformation behavior and ring rolling process of SiCp/Al composites used in aircraft manufacturing

More Information
  • 摘要: 为了研究航空用高强韧碳化硅颗粒增强铝基复合材料(SiCp/Al)的热变形行为,为环轧制备航空用大尺寸环件提供工艺依据,采用粉末冶金工艺制备了17%SiCp/Al复合材料(体积分数)。通过不同温度与不同变形速率的热压缩实验,获得了复合材料在不同热变形条件下的应力应变关系,并根据这一关系建立了复合材料的热加工图。研究结果表明,SiCp/Al复合材料随着变形量的增加,在低于440 ℃或高于490 ℃以及高于0.100 s‒1的变形速率下易发生失稳变形。SiCp/Al复合材料在变形温度与变形速率不适宜时,除了发生传统金属的失稳变形等工艺缺陷外,还会出现颗粒损伤引起的表面开裂,这种开裂无法通过机加工去除,应予以避免。最后,在热加工图的指导以及环轧实验验证下,给出了适宜SiCp/Al复合材料环轧成型的工艺参数,完成了外径达1200 mm的SiCp/Al复合材料环件制备。
  • 图  1  SiCp/Al复合材料金相组织和能谱分析:(a)显微组织;(b)Cu能谱分析;(c)Mg能谱分析;(d)Al能谱分析;(e)Si能谱分析

    Figure  1.  Microstructure and EDS mapping of the SiCp/Al composites: (a) microstructure; (b) EDS of Cu; (c) EDS of Mg; (d) EDS of Al; (e) EDS of Si

    图  2  SiCp/Al复合材料热压缩试样压缩前(a)与压缩后(b)宏观形貌

    Figure  2.  Macro appearance of the SiCp/Al composite specimens before (a) and after (b) hot compressing

    图  4  不同变形量下SiCp/Al复合材料logσ $ \log \dot \varepsilon $ 函数关系拟合图:(a)0.1;(b)0.3;(c)0.5;(d)0.7

    Figure  4.  Fitting results of logσ and $ \log \dot \varepsilon $ for the SiCp/Al composites at the different deformation: (a) 0.1; (b) 0.3; (c) 0.5; (d) 0.7

    图  5  不同变形量下SiCp/Al复合材料热加工图:(a)0.1;(b)0.3;(c)0.5;(d)0.7

    Figure  5.  Hot processing maps of the SiCp/Al composites at the different deformation: (a) 0.1; (b) 0.3; (c) 0.5; (d) 0.7

    图  6  1#样件扩孔时发生多次开裂后的裂纹宏观形貌(a),1#样件裂纹附近微观组织(b),2#样件在环轧过程中发生失稳变形的宏观形貌(c)及3#样件完成环轧后宏观形貌(d)

    Figure  6.  Cracking macro appearance of 1# part (a), the microstructure near the cracks of 1# part (b), the macro appearance of 2# part after the buckling deformation during rolling (c), and the macro appearance of 3# part finished the ring rolling process (d)

    表  1  Al‒Cu‒Mg合金化学成分(质量分数)

    Table  1.   Chemical composition of the Al‒Cu‒Mg alloys %

    Cu Mg Al
    4.8 2.0 93.2
    下载: 导出CSV

    表  2  SiCp/Al复合材料环轧工艺方案

    Table  2.   Processing parameter of ring rolling for the SiCp/Al composites

    样件编号 变形速率 / s‒1 变形温度 / ℃ 单次变形量
    1# 0.100 450 0.3
    2# 0.010 480 0.1
    3# 0.010 450 0.1
    下载: 导出CSV
  • [1] Kumar S, Singh R, Hashmi M S J. Metal matrix composite: a methodological review. Adv Mater Process Technol, 2019, 6(1): 13
    [2] Zhou L Y, Li X L, Zhong Q, et al. Research progress in preparation of ceramic particle reinforced aluminum matrix composites. Hot Working Technol, 2020, 49(18): 21 doi: 10.14158/j.cnki.1001-3814.20183200

    周立玉, 李秀兰, 钟强, 等. 陶瓷颗粒增强铝基复合材料制备工艺研究进展. 热加工工艺, 2020, 49(18): 21 doi: 10.14158/j.cnki.1001-3814.20183200
    [3] Nardone V C, Prewo K M. On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr Metall, 1986, 20(1): 43 doi: 10.1016/0036-9748(86)90210-3
    [4] Hou Y N, Yang K M, Liu Y, et al. Research progress on the effect of interfacial thermal mismatch on mechanical properties of metal matrix composites. Powder Metall Technol, https://doi.org/10.19591/j.cnki.cn11-1974/tf.2021030033

    侯雅男, 杨昆明, 刘悦, 等. 界面热失配对金属基复合材料力学性能的影响研究. 粉末冶金技术, https://doi.org/10.19591/j.cnki.cn11-1974/tf.2021030033
    [5] Ashby M F, Johnson L. On the generation of dislocations at misfitting particles in a ductile matrix. Philos Mag A, 1969, 20(167): 1009 doi: 10.1080/14786436908228069
    [6] Miller W S, Humphreys F J. Strengthening mechanisms in particulate metal matrix composites. Scr Metall Mater, 1991, 25(1): 33 doi: 10.1016/0956-716X(91)90349-6
    [7] Yang Z, Fan J, Liu Y, et al. Effect of the particle size and matrix strength on strengthening and damage process of the particle reinforced metal matrix composites. Materials, 2021, 14(3): 675 doi: 10.3390/ma14030675
    [8] Lewis C A, Withers P J. Weibull modelling of particle cracking in metal matrix composites. Acta Metall Mater, 1995, 43(10): 3685 doi: 10.1016/0956-7151(95)90152-3
    [9] Chen J, Xiong N, Ge Q L, et al. Fabrication and properties of large size aluminum-based boron carbide composites by hot isostatic pressing. Powder Metall Technol, 2020, 38(2): 132 doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.008

    陈锦, 熊宁, 葛启录, 等. 热等静压法制备大尺寸铝基碳化硼复合材料及性能研究. 粉末冶金技术, 2020, 38(2): 132 doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.008
    [10] Chegini M, Aboutalebi M R, Seyedein S H, et al. Study on hot deformation behavior of AISI 414 martensitic stainless steel using 3D processing map. J Manuf Process, 2020, 56: 916 doi: 10.1016/j.jmapro.2020.05.008
    [11] Lin N, Huang N, Dong N, et al. Hot deformation behaviors in Ti−6Al−4V/(TiB+TiC) composites. Acta Metall Sinica, 2021, 34(12): 11
    [12] Wang J, Li S, Ma H. Evolution of microstructure, texture, and mechanical properties of as-extruded ND/ZK60 composite during hot compression deformation. Metals, 2020, 10(9): 1191 doi: 10.3390/met10091191
    [13] Meng Q, Bai C, Xu D. Flow behavior and processing map for hot deformation of ATI425 titanium alloy. J Mater Sci Technol, 2018, 34(4): 679 doi: 10.1016/j.jmst.2017.07.015
    [14] Pang J A, Peng M Q, Hao S M. Study on hot deformation behavior and hot processing map of 40%SiCp/Al composites. Powder Metall Technol, https://doi.org/10.19591/j.cnki.cn11-1974/tf.2021080007

    庞晋安, 彭名卿 , 郝世明. 40%SiCp/Al复合材料的热变形行为及热加工图研究. 粉末冶金技术, https://doi.org/10.19591/j.cnki.cn11-1974/tf.2021080007
    [15] Yang Q, Lei L, Fan X, et al. Microstructure evolution and processing map of Al–Cu–Li–Mg–Ag alloy. Mater Chem Phys, 2020, 254: 123256 doi: 10.1016/j.matchemphys.2020.123256
    [16] Yang Z, Fan J Z, Liu Y Q, et al. Effect of combination variation of particle and matrix on the damage evolution and mechanical properties of particle reinforced metal matrix composites. Mater Sci Eng A, 2021, 806: 140804 doi: 10.1016/j.msea.2021.140804
    [17] Williams J J, Flom Z, Amell A A, et al. Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography. Acta Mater, 2010, 58(18): 6194 doi: 10.1016/j.actamat.2010.07.039
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  399
  • HTML全文浏览量:  107
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-09
  • 刊出日期:  2022-12-23

目录

    /

    返回文章
    返回