增材制造用球形TiAl合金粉末制备工艺研究

赵少阳 谈萍 李增峰 殷京瓯 沈垒

赵少阳, 谈萍, 李增峰, 殷京瓯, 沈垒. 增材制造用球形TiAl合金粉末制备工艺研究[J]. 粉末冶金技术, 2022, 40(6): 488-493. doi: 10.19591/j.cnki.cn11-1974/tf.2022010007
引用本文: 赵少阳, 谈萍, 李增峰, 殷京瓯, 沈垒. 增材制造用球形TiAl合金粉末制备工艺研究[J]. 粉末冶金技术, 2022, 40(6): 488-493. doi: 10.19591/j.cnki.cn11-1974/tf.2022010007
ZHAO Shao-yang, TAN Ping, LI Zeng-feng, YIN Jing-ou, SHEN Lei. Study on preparation technology of spherical TiAl alloy powders used for additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(6): 488-493. doi: 10.19591/j.cnki.cn11-1974/tf.2022010007
Citation: ZHAO Shao-yang, TAN Ping, LI Zeng-feng, YIN Jing-ou, SHEN Lei. Study on preparation technology of spherical TiAl alloy powders used for additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(6): 488-493. doi: 10.19591/j.cnki.cn11-1974/tf.2022010007

增材制造用球形TiAl合金粉末制备工艺研究

doi: 10.19591/j.cnki.cn11-1974/tf.2022010007
基金项目: 陕西省重点研发计划资助项目(2021GY-234)
详细信息
    通讯作者:

    E-mail: 13892823175@163.com

  • 中图分类号: TF122

Study on preparation technology of spherical TiAl alloy powders used for additive manufacturing

More Information
  • 摘要: 以TiAl合金块为原料,利用水冷铜坩埚真空感应熔炼气雾化技术制粉,通过对导流系统和雾化器的优化改进,制备出氧含量低、细粉收率高的球形TiAl合金粉末。结果表明,将导热性好的石墨导流基座和耐冲刷的BN材质陶瓷导流内芯配合使用,既可以保证导流管加热,也可以有效阻止金属熔液的冲刷;螺旋喷管雾化器使雾化点下移,回流区位置远离导流管出口,解决了液柱反流的问题。螺旋分布管能够有效约束雾化气体,动能损失小,能够显著提高细粉收率达20%以上。实验制备的球形TiAl合金粉末流动性为27.7 [s·(50 g)‒1],球形度>90%,粉末氧增量小,适用于3D打印和注射成型工艺用粉。
  • 图  1  VIGA-CC气雾化法制备TiAl粉末流程图

    Figure  1.  Flow diagram of the TiAl powders prepared by VIGA-CC

    图  2  石墨导流管在气雾化前后内径变化:(a)雾化前;(b)雾化后;(c)制备粉末的宏观形貌

    Figure  2.  Change in the inner diameter of the graphite deflector: (a) before atomization; (b) after atomization; (c) macro-profile of the prepared powders

    图  3  石墨基座和陶瓷导流内芯(a)及制备的粉末宏观形貌(b)

    Figure  3.  Graphite base and the ceramic guide inner core (a) and the macro-profile of prepared powders (b)

    图  4  模拟雾化气体速度流场分布(a)、反喷引起环孔式雾化器堵塞(b)及环孔式雾化器制备的粉末(c)

    Figure  4.  Simulation distribution of the atomized gas velocity flow field (a), the blockage of annular atomizer caused by reverse injection (b), and the powder macro-profile prepared by annular atomizer (c)

    图  5  螺旋分布喷管雾化器(a)和制备的粉末(b)

    Figure  5.  Spiral distribution nozzle atomizer (a) and the prepared powders (b)

    图  6  改进后气雾化制备的TiAl合金粉末表面形貌

    Figure  6.  Surface morphology of the TiAl alloy powders prepared by the modified VIGA-CC

    表  1  改进后VIGA-CC制备的TiAl粉末物理性能

    Table  1.   Physical properties of the TiAl powders prepared by the modified VIGA-CC

    流动性 / [s·(50 g)‒1] 松装密度 / (g·cm‒3) 振实密度 / (g·cm‒3) 球形度 / %
    27.7 2.22 2.49 >90
    下载: 导出CSV

    表  2  改进后VIGA-CC所制TiAl粉末的化学成分(质量分数)

    Table  2.   Chemical composition of the TiAl powders prepared by the modified VIGA-CC %

    Al Cr Fe Nb C H N O O(原料)
    34.000 2.420 0.100 4.750 0.014 0.001 0.006 0.066 0.060
    下载: 导出CSV
  • [1] Qin R Y, Zhang G D, Li N, et al. Research progress on additive manufacturing of TiAl-based alloys. J Mech Eng, 2021, 57(8): 115 doi: 10.3901/JME.2021.08.115

    秦仁耀, 张国栋, 李能, 等. TiAl基合金的增材制造技术研究进展. 机械工程学报, 2021, 57(8): 115 doi: 10.3901/JME.2021.08.115
    [2] Wang L, Shen C, Zhang C, et al. Research progress and prospects of TiAl alloy produced by additive manufacturing technology. Electr Weld Mach, 2020, 50(4): 1 doi: 10.7512/j.issn.1001-2303.2020.04.01

    王林, 沈忱, 张弛, 等. 增材制造TiAl合金的研究现状及展望. 电焊机, 2020, 50(4): 1 doi: 10.7512/j.issn.1001-2303.2020.04.01
    [3] Zhang G Q, Liu Y F, Liu N, et al. Progress in powder metallurgy TiAl-based intermetallics. Aeronaut Manuf Technol, 2019, 62(22): 38

    张国庆, 刘玉峰, 刘娜, 等. TiAl金属间化合物粉末冶金工艺研究进展. 航空制造技术, 2019, 62(22): 38
    [4] Sun S J. TiAl alloy parts produced by additive manufacturing method will be used in turbine blade of aircraft engine, Powder Metall Ind, 2015, 25(1): 65

    孙世杰. 增材制造方法生产的TiAl合金零件将被应用于飞机发动机涡轮叶片. 粉末冶金工业, 2015, 25(1): 65
    [5] Du Y L, Ou Y Y, Lu X X, et al. Research progress on additive manufacturing of TiAl intermetallic compound. J Xuzhou Inst Technol Nat Sci, 2016, 31(2): 1

    杜宇雷, 欧园园, 卢晓阳, 等. TiAl金属间化合物的增材制造研究进展. 徐州工程学院学报(自然科学版), 2016, 31(2): 1
    [6] Liu N, Li Z, Yuan H, et al. Fabrication and characterization of gas atomized TiAl alloy powders. J Iron Steel Res, 2011, 23(Suppl 2): 537 doi: 10.13228/j.boyuan.issn1001-0963.2011.s2.140

    刘娜, 李周, 袁华, 等. 气雾化TiAl合金粉末的制备及表征. 钢铁研究学报, 2011, 23(增刊 2): 537 doi: 10.13228/j.boyuan.issn1001-0963.2011.s2.140
    [7] Liu Y J, Hu Q, Zhao X M, et al. Investigation of centrifugal atomization technology of high fluidity aluminium alloy powder for additive manufacturing. Rare Met Mater Eng, 2021, 50(5): 1767

    刘英杰, 胡强, 赵新明, 等. 增材制造用高流动性铝合金粉末制备技术研究. 稀有金属材料与工程, 2021, 50(5): 1767
    [8] He W W, Tang H P, Chen B K, et al. Study on process and particle size prediction on high-NbTiAl powder produced by PREP. Titanium Ind Prog, 2019, 36(3): 26

    贺卫卫, 汤慧萍, 陈斌科, 等. PREP法制备高铌TiAl粉末工艺研究及粒度预测. 钛工业进展, 2019, 36(3): 26
    [9] Yang X, Xi Z P, Liu Y, et al. Characterization of TiAl powders prepared by plasma rotating electrode processing. Rare Met Mater Eng, 2010, 39(12): 2251

    杨鑫, 奚正平, 刘咏, 等. 等离子旋转电极法制备钛铝粉末性能表征. 稀有金属材料与工程, 2010, 39(12): 2251
    [10] He W W, Tang H P, Liu Y, et al. Preparation of high-temperature TiAI pre-alloyed powder by PREP and its densification microstructure research. Rare Met Mater Eng, 2014, 43(11): 2768

    贺卫卫, 汤慧萍, 刘咏, 等. PREP法制备高温TiAl预合金粉末及其致密化坯体组织研究. 稀有金属材料与工程, 2014, 43(11): 2768
    [11] Yang G Y, Jia W P, Zhao P, et al. Ti‒47Al‒2Nb‒2Cr alloy produced by selective electron beam melting. Rare Met Mater Eng, 2016, 45(7): 1683 doi: 10.1016/S1875-5372(16)30140-0
    [12] Li X G, Zhu Q, Shu S, et al. Fine spherical powder production during gas atomization of pressurized melts through melt nozzles with a small inner diameter. Powder Technol, 2019, 356: 759 doi: 10.1016/j.powtec.2019.09.023
    [13] Lubanska H. Correction of spray ring data for gas atomization of liquid metals. JOM, 1970, 22: 45
    [14] Dong H Q, Guo Z M, Mao X M, et al. Prospect of development trend of melting technology of titanium and/or its alloys with high efficiency and low energy consumption. Mater Rev, 2008, 22(5): 68 doi: 10.3321/j.issn:1005-023X.2008.05.017

    董和泉, 国子明, 毛协民, 等. 低能耗节约型钛及钛合金熔炼技术的发展趋势. 材料导报, 2008, 22(5): 68 doi: 10.3321/j.issn:1005-023X.2008.05.017
    [15] Chen Y C, Han J C, Xiao S L, et al. Research progress of rare earth yttrium application in γ-TiAl based alloy and precision thermal forming. Chin J Nonferrous Met, 2014, 24(5): 1241

    陈玉勇, 韩建超, 肖树龙, 等. 稀土Y在γ-TiAl基合金及其精密热成形中应用的研究进展. 中国有色金属学报, 2014, 24(5): 1241
    [16] Kostov A, Friedrich B. Predicting thermodynamic stability of crucible oxides in molten titanium and titanium alloys. Compos Mater Sci, 2006, 38(2): 374 doi: 10.1016/j.commatsci.2006.03.006
    [17] Zhao S Y, Chen G, Tan P, et al. Characterization of spherical TC4 powders by gas atomization and its interstitial elemental control. Chin J Nonferrous Met, 2016, 26(5): 980

    赵少阳, 陈刚, 谈萍, 等. 球形TC4粉末的气雾化制备、表征及间隙元素控制. 中国有色金属学报, 2016, 26(5): 980
    [18] Sadrnezhaad S K, Raz S B. Interaction between refractory crucible materials and the melted NiTi shape-memory alloy. Metall Mater Trans B, 2005, 36: 395 doi: 10.1007/s11663-005-0068-2
    [19] Kartavykh A V, Tcherdyntsev V V, Zollinger J. TiAl‒Nb melt interaction with AlN refractory crucibles. Mater Chem Phys, 2009, 116(1): 300 doi: 10.1016/j.matchemphys.2009.03.032
    [20] Kartavykh A V, Cherdyntsev V V. Chemical compatibility of a TiAl‒Nb melt with oxygen-free crucible ceramics made of aluminum nitride. Russ Metall, 2008, 6: 491
    [21] Kartavykh A V, Tcherdyntsev V V, Zollinger J. TiAl‒Nb melt interaction with pyrolytic boron nitride crucibles. Mater Chem Phys, 2010, 119(3): 347 doi: 10.1016/j.matchemphys.2009.09.021
    [22] Lee E S, Ahn S. Solidification progress and heat transfer analysis of GAS-atomized alloy droplets during spray forming. Acta Metall Mater, 1994, 42(9): 3231 doi: 10.1016/0956-7151(94)90421-9
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  33
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 刊出日期:  2022-12-23

目录

    /

    返回文章
    返回