选区激光熔化工艺对NiTi形状记忆合金相变及拉伸性能影响

李晴 席晓莹 张建涛 唐浩 柳中强 肖志瑜

李晴, 席晓莹, 张建涛, 唐浩, 柳中强, 肖志瑜. 选区激光熔化工艺对NiTi形状记忆合金相变及拉伸性能影响[J]. 粉末冶金技术, 2022, 40(5): 431-440. doi: 10.19591/j.cnki.cn11-1974/tf.2022010009
引用本文: 李晴, 席晓莹, 张建涛, 唐浩, 柳中强, 肖志瑜. 选区激光熔化工艺对NiTi形状记忆合金相变及拉伸性能影响[J]. 粉末冶金技术, 2022, 40(5): 431-440. doi: 10.19591/j.cnki.cn11-1974/tf.2022010009
LI Qing, XI Xiao-ying, ZHANG Jian-tao, TANG Hao, LIU Zhong-qiang, XIAO Zhi-yu. Effect of selective laser melting process on phase transition and tensile properties of NiTi shape memory alloys[J]. Powder Metallurgy Technology, 2022, 40(5): 431-440. doi: 10.19591/j.cnki.cn11-1974/tf.2022010009
Citation: LI Qing, XI Xiao-ying, ZHANG Jian-tao, TANG Hao, LIU Zhong-qiang, XIAO Zhi-yu. Effect of selective laser melting process on phase transition and tensile properties of NiTi shape memory alloys[J]. Powder Metallurgy Technology, 2022, 40(5): 431-440. doi: 10.19591/j.cnki.cn11-1974/tf.2022010009

选区激光熔化工艺对NiTi形状记忆合金相变及拉伸性能影响

doi: 10.19591/j.cnki.cn11-1974/tf.2022010009
基金项目: 国家自然科学基金项目(52274363):广东省重点领域研发计划项目(2020B090923001);广东省自然科学基金团队项目(2015A030312003)
详细信息
    通讯作者:

    E-mail: zhyxiao@scut.edu.cn

  • 中图分类号: TG139+.6;TN249

Effect of selective laser melting process on phase transition and tensile properties of NiTi shape memory alloys

More Information
  • 摘要: 采用选区激光熔化成形工艺制备了NiTi形状记忆合金,研究了不同工艺参数组合下激光能量密度对NiTi合金相变、显微组织、拉伸性能和形状记忆性能的影响。结果表明:激光能量密度在45~85 J·mm−3时,试样相对密度均在99.5%以上。随激光能量密度增大,试样中NiTi(B2)相含量有所减少,相变温度逐渐提高。在打印试样中均存在纳米Ti2Ni相,随激光能量密度增大,析出相从均匀点状分布变为半网状分布。激光能量密度为47.62 J·mm−3的试样具有最优综合性能,样品的抗拉强度为(783±3) MPa,断后伸长率为(13.9±0.2)%,室温循环拉伸20次经热回复后回复率可达100%,可回复应变为2.75%。
  • 图  1  NiTi合金粉末形貌及粒径分布:(a)粉末形貌;(b)粒径分布

    Figure  1.  Morphology and particle size distribution of the NiTi powders: (a) powder morphology; (b) particle size distribution

    图  2  SLMed-NiTi合金块体和拉伸试样尺寸:(a)、(c)不同打印参数下的块体试样;(b)拉伸试样尺寸

    Figure  2.  Dimensions of the SLMed-NiTi bulk samples and tensile samples: (a) and (c) bulk samples with the different building parameters; (b) tensile samples

    图  3  NiTi合金粉末及SLMed-NiTi试样示差扫描量热曲线(a)及相变温度随能量密度变化曲线(b)

    Figure  3.  DSC curves (a) and the phase transformation temperatures as the function of energy density (b) of the NiTi alloy powders and the SLMed-NiTi samples

    图  4  NiTi合金粉末及SLMed-NiTi试样X射线衍射谱图(a)和SLMed-NiTi试样物相质量分数随能量密度变化曲线(b)

    Figure  4.  XRD patterns of the NiTi alloy powders and the SLMed-NiTi samples (a) and the phase content as the function of energy density of the SLMed-NiTi samples (b)

    图  5  SLMed-NiTi抛光光学显微镜图像及显微组织:(a)1#试样;(b)2#试样;(c)3#试样;(d)4#试样

    Figure  5.  Optical images and microstructure of the SLMed-NiTi samples: (a) 1#; (b) 2#; (c) 3#; (d) 4#

    图  6  不同能量密度下制备的SLMed-NiTi试样扫描电子显微形貌:(a)、(c)4#试样;(b)、(d)1#试样

    Figure  6.  SEM morphology of the SLMed-NiTi samples: (a), (c) 4#; (b), (d) 1#

    图  7  1#试样透射电镜和高分辨率透射电镜形貌:(a)晶粒形貌;(b)位错网络;(c)Ti2Ni析出相分布;(d)Ti2Ni/NiTi(B2)界面的高分辨率透射电镜形貌及相应的快速傅立叶变换(fast fourier transform,FFT)图像

    Figure  7.  TEM images and HRTEM images of the 1# samples: (a) grain morphology; (b) dislocation network; (c) Ti2Ni precipitation phase distribution; (d) HRTEM image of Ti2Ni/NiTi (B2) interface and the corresponding FFT image

    图  8  不同能量密度下制备的SLMed-NiTi合金拉伸应力–应变曲线(a)和合金拉伸性能比较(b)

    Figure  8.  Tensile stress‒strain curves of the SLMed-NiTi alloys prepared by the different energy densities(a) and the tensile property comparison of the NiTi alloys (b)

    图  9  SLMed-NiTi合金各试样循环拉伸曲线:(a)、(b)1#;(c)、(d)2#;(e)、(f)3#;(g)、(h)4#

    Figure  9.  Circular tensile curves of the SLMed-NiTi alloys: (a), (b) 1#; (c), (d) 2#; (e), (f) 3#; (g), (h) 4#

    图  10  SLMed-NiTi合金各试样RSERSMERirrec随能量密度变化趋势图

    Figure  10.  Trend of RSE, RSEM, and Rirrec with the energy density of the SLMed-NiTi alloys

    表  1  选区激光熔化制备NiTi合金工艺参数

    Table  1.   SLM process parameters of the NiTi alloys

    实验编号激光功率 / W扫描速率 / (mm·s‒1)粉末层厚 / μm扫描间距 / μm能量密度 / (J·mm‒3)
    1#80700308047.62
    2#100700308059.52
    3#80500308066.67
    4#100500308083.33
    下载: 导出CSV

    表  2  不同能量密度下制备SLMed-NiTi合金的临界应力、抗拉强度和断后伸长率

    Table  2.   Critical stress, tensile strength, and plasticity of the SLMed-NiTi alloys formed under the different energy densities

    试样临界应力 / MPa抗拉强度 / MPa断后伸长率 / %
    1#430±3783±313.9±0.2
    2#377±2675±411.4±0.3
    3#302±3752±313.0±0.2
    4#144±4579±511.9±0.2
    下载: 导出CSV
  • [1] Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys, 1963, 34(5): 1475 doi: 10.1063/1.1729603
    [2] Otsuka K, Ren X B. Recent developments in the research of shape memory alloys. Intermetallics, 1999, 7(5): 511 doi: 10.1016/S0966-9795(98)00070-3
    [3] Moghaddam N S, Skoracki R, Miller M, et al. Three dimensional printing of stiffness-tuned, nitinol skeletal fixation hardware with an example of mandibular segmental defect repair. Procedia CIRP, 2016, 49: 45 doi: 10.1016/j.procir.2015.07.027
    [4] Speirs M, Wang X, Baelen S V, et al. On the transformation behavior of NiTi shape-memory alloy produced by SLM. Shap Mem Superelasticity, 2016, 2: 310 doi: 10.1007/s40830-016-0083-y
    [5] Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Des, 2014, 56: 1078 doi: 10.1016/j.matdes.2013.11.084
    [6] Moghaddam N S, Jahadakbar A, Amerinatanzi A, et al. Recent advances in laser-based additive manufacturing // Laser-Based Additive Manufacturing of Metal Parts. Boca Raton, 2017: 1
    [7] Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci, 2016, 83: 630 doi: 10.1016/j.pmatsci.2016.08.001
    [8] Hassan M R, Mehrpouya M, Dawood S. Review of the machining difficulties of nickel-titanium based shape memory alloys. Appl Mech Mater, 2014, 564: 533 doi: 10.4028/www.scientific.net/AMM.564.533
    [9] Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review. Prog Mater Sci, 2012, 57(5): 911 doi: 10.1016/j.pmatsci.2011.11.001
    [10] Wu M H. Fabrication of nitinol materials and components. Mater Sci Forum, 2002, 394-395: 285 doi: 10.4028/www.scientific.net/MSF.394-395.285
    [11] Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct, 2014, 23(10): 104002 doi: 10.1088/0964-1726/23/10/104002
    [12] Jahadakbar A, Moghaddam N S, Amerinatanzi A, et al. Finite element simulation and additive manufacturing of stiffness-matched NiTi fixation hardware for mandibular reconstruction surgery. Bioengineering, 2016, 3(4): 36 doi: 10.3390/bioengineering3040036
    [13] Amerinatanzi A, Moghaddam N S, Ibrahim H, et al. Evaluating a NiTi implant under realistic loads: a simulation study // Proceedings of the ASME 2016 Smart Materials, Adaptive Structures and Intelligent Systems. Stowe, 2016: 28
    [14] Saedi S, Moghaddam N S, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater, 2018, 144: 552 doi: 10.1016/j.actamat.2017.10.072
    [15] Moghaddam N S, Saghaian S E, Amerinatanzi A, et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting. Mater Sci Eng A, 2018, 724: 220 doi: 10.1016/j.msea.2018.03.072
    [16] Dadbakhsh S, Speirs M, Kruth J P, et al. Influence of SLM on shape memory and compression behaviour of NiTi scaffolds. CIRP Ann, 2015, 64(1): 209 doi: 10.1016/j.cirp.2015.04.039
    [17] Saedi S, Turabi A S, Andani M T, et al. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J Alloys Compd, 2016, 677: 204 doi: 10.1016/j.jallcom.2016.03.161
    [18] Bormann T, Müller B, Schinhammer M, et al. Microstructure of selective laser melted nickel-titanium. Mater Charact, 2014, 94: 189 doi: 10.1016/j.matchar.2014.05.017
    [19] Dadbakhsh S, Vrancken B, Kruth J P, et al. Texture and anisotropy in selective laser melting of NiTi alloy. Mater Sci Eng A, 2016, 650: 225 doi: 10.1016/j.msea.2015.10.032
    [20] Moghaddam N S, Saedi S, Amerinatanzi A, et al. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci Rep, 2019, 9(1): 41 doi: 10.1038/s41598-018-36641-4
    [21] Andani M T, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater, 2017, 68: 224 doi: 10.1016/j.jmbbm.2017.01.047
    [22] Yang Y, Zhan J B, Li B, et al. Laser beam energy dependence of martensitic transformation in SLM fabricated NiTi shape memory alloy. Materialia, 2019, 6: 100305 doi: 10.1016/j.mtla.2019.100305
    [23] Lu H Z, Yang C, Luo X, et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing. Mater Sci Eng A, 2019, 763: 1381
    [24] Lu H Z, Ma H W, Cai W S, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49. 6 shape memory alloy fabricated via selective laser melting. Acta Mater, 2021, 219: 117261 doi: 10.1016/j.actamat.2021.117261
    [25] Ren D C, Zhang H B, Liu Y J, et al. Microstructure and properties of equiatomic Ti–Ni alloy fabricated by selective laser melting. Mater Sci Eng A, 2020, 771(35): 138586
    [26] Bimber Beth A, Hamilton R F, Keist J, et al. Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition. Mater Sci Eng A, 2016, 674: 125 doi: 10.1016/j.msea.2016.07.059
    [27] Bagheri A, Mahtabi M J, Shamsaei N. Fatigue behavior and cyclic deformation of additive manufactured NiTi. J Mater Process Technol, 2018, 252: 440 doi: 10.1016/j.jmatprotec.2017.10.006
    [28] Xiong Z W, Li Z H, Sun Z, et al. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect. J Mater Sci Technol, 2019, 35(10): 2238 doi: 10.1016/j.jmst.2019.05.015
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  2611
  • HTML全文浏览量:  115
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04
  • 刊出日期:  2022-10-30

目录

    /

    返回文章
    返回