Y2O3对AlCoCrFeNi高熵合金涂层组织及力学性能的影响

杨晓辉 易鸿 谢会起 李晓峰 刘彬

杨晓辉, 易鸿, 谢会起, 李晓峰, 刘彬. Y2O3对AlCoCrFeNi高熵合金涂层组织及力学性能的影响[J]. 粉末冶金技术, 2022, 40(6): 549-554. doi: 10.19591/j.cnki.cn11-1974/tf.2022010010
引用本文: 杨晓辉, 易鸿, 谢会起, 李晓峰, 刘彬. Y2O3对AlCoCrFeNi高熵合金涂层组织及力学性能的影响[J]. 粉末冶金技术, 2022, 40(6): 549-554. doi: 10.19591/j.cnki.cn11-1974/tf.2022010010
YANG Xiao-hui, YI Hong, XIE Hui-qi, LI Xiao-feng, LIU Bin. Effects of Y2O3 on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings[J]. Powder Metallurgy Technology, 2022, 40(6): 549-554. doi: 10.19591/j.cnki.cn11-1974/tf.2022010010
Citation: YANG Xiao-hui, YI Hong, XIE Hui-qi, LI Xiao-feng, LIU Bin. Effects of Y2O3 on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings[J]. Powder Metallurgy Technology, 2022, 40(6): 549-554. doi: 10.19591/j.cnki.cn11-1974/tf.2022010010

Y2O3对AlCoCrFeNi高熵合金涂层组织及力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2022010010
基金项目: 国家自然科学基金资助项目(52071299,51804280);山西省重点研发计划(国际科技合作)项目(201903D421075);山西省教育厅科技创新项目(2019L0556);山西省重点研发计划项目(202102050201009)
详细信息
    通讯作者:

    E-mail: xhyang@tyust.edu.cn(杨晓辉)

    lxf@nuc.edu.cn(李晓峰)

  • 中图分类号: TG174.44

Effects of Y2O3 on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings

More Information
  • 摘要: 利用激光熔覆技术在Q235钢基体表面分别制备出添加不同质量分数Y2O3的AlCoCrFeNi高熵合金涂层。采用X射线衍射仪、扫描电子显微镜、显微硬度计和摩擦磨损试验机对AlCoCrFeNi高熵合金涂层的微观组织、硬度及摩擦磨损性能进行了分析。结果表明:AlCoCrFeNi高熵合金涂层由面心立方结构(FCC)和体心立方结构(BCC)两相构成;随着Y2O3质量分数的提高,其体心立方结构相体积分数增加,而面心立方结构相的体积分数变化呈相反趋势。AlCoCrFeNi高熵合金涂层组织由等轴晶构成,加入Y2O3后,促进了熔池流动,使气孔逐渐消失,致密性提高,晶粒明显细化。添加质量分数5%Y2O3的涂层组织呈树枝晶状,形成弥散分布的YAl2和Y2O3相;涂层的显微硬度可达HV 350,约为AlCoCrFeNi高熵合金涂层硬度的2倍,强化效果明显。Y2O3的添加有利于促进涂层中体心立方相的形成和YAl2相的析出,能有效提高高熵合金涂层的硬度及耐磨性能。
  • 图  1  添加不同质量分数Y2O3的AlCoCrFeNi高熵合金涂层X射线衍射图

    Figure  1.  XRD patterns of the AlCoCrFeNi high-entropy alloy coatings add by Y2O3 with the different mass fraction

    图  2  添加不同质量分数Y2O3的AlCoCrFeNi高熵合金涂层显微形貌:(a)0;(b)1%;(c)3%;(d)5%

    Figure  2.  SEM images of the AlCoCrFeNi high-entropy alloy coatings add by Y2O3 with the different mass fraction: (a) 0; (b) 1%; (c) 3%; (d) 5%

    图  3  AlCoCrFeNi-5%Y2O3高熵合金涂层能谱分析

    Figure  3.  EDS element distribution of the AlCoCrFeNi-5%Y2O3 high entropy alloy coatings

    图  4  添加不同质量分数Y2O3的AlCoCrFeNi高熵合金涂层显微硬度图

    Figure  4.  Microhardness of the AlCoCrFeNi high-entropy alloy coatings add by Y2O3 with the different mass fraction

    图  5  AlCoCrFeNi-xY2O3x=0、1%、3%、5%)高熵合金涂层摩擦系数

    Figure  5.  Friction coefficient of the AlCoCrFeNi-xY2O3 (x=0, 1%, 3%, 5%) high-entropy alloy coatings

    图  6  添加不同质量分数Y2O3的AlCoCrFeNi高熵合金涂层表面磨损形貌:(a)0;(b)1%;(c)3%;(d)5%

    Figure  6.  Surface wear profiles of the AlCoCrFeNi high-entropy alloy coatings add by Y2O3 with the different mass fraction: (a) 0; (b) 1%; (c) 3%; (d) 5%

    表  1  CoCrFeMnNi-xY2O3x=0、1%、3%、5%)高熵合金涂层能谱分析结果

    Table  1.   EDS analysis results of the CoCrFeMnNi-xY2O3 (x=0, 1%, 3%, 5%) high-entropy alloy coatings

    Y2O3质量分数,x / % 区域 Al Co Cr Fe Ni Y
    0,图2(a) 1 11.48 17.84 14.82 41.76 14.10 0
    2 8.64 18.68 14.48 44.35 13.85 0
    1,图2(b) 1 9.36 14.70 15.31 49.76 10.67 0.20
    2 7.85 14.54 17.14 48.79 11.48 0.20
    3,图2(c) 1 11.09 14.37 14.12 48.75 11.39 0.27
    2 9.30 14.75 14.78 48.25 12.67 0.25
    5,图2(d) 1 9.64 15.56 14.32 48.24 11.46 0.77
    2 8.55 16.16 13.71 48.97 11.89 0.73
    下载: 导出CSV
  • [1] Sun S J, Tan Y Z, Lin H R, et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater Des, 2017, 133: 122 doi: 10.1016/j.matdes.2017.07.054
    [2] Zhang X, Cui H Z, Wang M L, et al. Effect of Al content on microstructure and corrosion resistance of AlxCoCrFeNi high entropy alloys. Trans Mater Heat Treat, 2018, 39(12): 29

    张雪, 崔洪芝, 王明亮, 等. Al含量对AlxCoCrFeNi系高熵合金组织和耐蚀性能的影响. 材料热处理学报, 2018, 39(12): 29
    [3] Ma M X, Zhu D C, Wang Z X, et al. Effect of Zr addition on microstructure and wear properties of CoCrCuFeMn high-entropy alloy. Adv Eng Sci, 2021, 53(6): 204

    马明星, 朱达川, 王志新, 等. Zr元素对CoCrCuFeMn高熵合金组织及耐磨性能的影响. 工程科学与技术, 2021, 53(6): 204
    [4] Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0. 5TiZr. Mate Des, 2017, 139: 498
    [5] Zhang W, Liaw P K, Zhang Y. Science and technology in high-entropy alloys. Sci China Mate, 2018, 61(1): 2 doi: 10.1007/s40843-017-9195-8
    [6] Li X F, Fu A, Cao Y K, et al. High-temperature mechanical properties and deformation behavior of carbides reinforced TiNbTaZrHf composite. J Alloys Compd, 2022, 894: 162414 doi: 10.1016/j.jallcom.2021.162414
    [7] Das A K. Effect of rare earth oxide additive in coating deposited by laser cladding: A review. Mater Today Proc, 2022, 52: 1558 doi: 10.1016/j.matpr.2021.11.236
    [8] Rogal L, Kalita D, Litynska-Dobrzynska L. CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3. Intermetallics, 2017, 86: 104 doi: 10.1016/j.intermet.2017.03.019
    [9] Li X F, Yang X H, Yi D H, et al. Effects of NbC content on microstructural evolution and mechanical properties of laser cladded Fe50Mn30Co10Cr10-xNbC composite coatings. Intermetallics, 2021, 138: 107309 doi: 10.1016/j.intermet.2021.107309
    [10] Jia B, Liu X J, Wang H, et al. Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3 dispersion. Sci China Technol Sci, 2018, 61(2): 179 doi: 10.1007/s11431-017-9115-5
    [11] Guo T M, Pu Y B, Zhang R H, et al. Influence of Y2O3 content on microstructure and properties of laser cladding 0.3C-18Cr alloy coating. Rare Met Mater Eng, 2019, 48(11): 3643

    郭铁明, 蒲亚博, 张瑞华, 等. Y2O3含量对激光熔覆0.3C-18Cr合金涂层组织和性能的影响. 稀有金属材料与工程, 2019, 48(11): 3643
    [12] Wang C L, Gao Y, Zhang G Y. Effect of Y2O3 addition on interface structure and corrosion resistance of laser additive manufacturing on the surface of Al alloys. Rare Met Mater Eng, 2017, 46(3): 812

    王成磊, 高原, 张光耀. Y2O3对铝合金表面激光增材制造组织及耐蚀性影响. 稀有金属材料与工程, 2017, 46(3): 812
    [13] Gu X, Jiang S, Cao F, et al. A β-solidifying TiAl alloy reinforced with ultra-fine Y-rich precipitates. Scr Mater, 2021, 192: 55 doi: 10.1016/j.scriptamat.2020.10.010
    [14] Li X F, Feng X H, Liu B, et al. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. J Alloys Compd, 2019, 788: 485 doi: 10.1016/j.jallcom.2019.02.223
    [15] Liu H, Sun S F, Zhang T, et al. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. Surf Coat Technol, 2021, 405: 126522 doi: 10.1016/j.surfcoat.2020.126522
    [16] Miao X J, Xia S H, Wu M P, et al. Effect of adding CeO2 on properties of Al-Ti laser clad coating on aluminum alloy. Heat Treat Met, 2021, 46(9): 234

    缪小进, 夏思海, 武美萍, 等. 添加CeO2对铝合金表面激光熔覆铝钛熔覆层性能的影响. 金属热处理, 2021, 46(9): 234
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  117
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-14
  • 刊出日期:  2022-12-23

目录

    /

    返回文章
    返回