真空熔结钢结硬质合金/Q235钢界面组织性能研究

石亚丽 黄智泉 魏炜 李恒 高站起 张永生

石亚丽, 黄智泉, 魏炜, 李恒, 高站起, 张永生. 真空熔结钢结硬质合金/Q235钢界面组织性能研究[J]. 粉末冶金技术, 2023, 41(2): 116-124. doi: 10.19591/j.cnki.cn11-1974/tf.2022030004
引用本文: 石亚丽, 黄智泉, 魏炜, 李恒, 高站起, 张永生. 真空熔结钢结硬质合金/Q235钢界面组织性能研究[J]. 粉末冶金技术, 2023, 41(2): 116-124. doi: 10.19591/j.cnki.cn11-1974/tf.2022030004
SHI Yali, HUANG Zhiquan, WEI Wei, LI Heng, GAO Zhanqi, ZHANG Yongsheng. Interfacial microstructure and properties of steel bonded cemented carbide/Q235 steel by vacuum fusion[J]. Powder Metallurgy Technology, 2023, 41(2): 116-124. doi: 10.19591/j.cnki.cn11-1974/tf.2022030004
Citation: SHI Yali, HUANG Zhiquan, WEI Wei, LI Heng, GAO Zhanqi, ZHANG Yongsheng. Interfacial microstructure and properties of steel bonded cemented carbide/Q235 steel by vacuum fusion[J]. Powder Metallurgy Technology, 2023, 41(2): 116-124. doi: 10.19591/j.cnki.cn11-1974/tf.2022030004

真空熔结钢结硬质合金/Q235钢界面组织性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2022030004
基金项目: 新型钢结硬质合金耐磨复合材料制备关键技术研发(222102230038)
详细信息
    通讯作者:

    E-mail: 1210362687@qq.com

  • 中图分类号: TG174.4

Interfacial microstructure and properties of steel bonded cemented carbide/Q235 steel by vacuum fusion

More Information
  • 摘要: 采用真空熔结工艺制备了TiC钢结硬质合金/Q235钢复合板,研究了复合板界面显微组织和力学性能。结果表明:钢结硬质合金与Q235钢基体之间形成了一定宽度的互溶区,互溶区宽度主要取决于熔结温度和熔结时间。Mn、Ni、Mo元素由钢结硬质合金经互溶区向基体中扩散,Fe元素由基体通过互溶区向钢结硬质合金扩散。互溶区是材料显微组织、化学成分及显微硬度变化的过渡区。复合板界面剪切强度为176~245 MPa,表明钢结硬质合金与Q235钢基体之间形成冶金结合。
  • 图  1  钢结硬质合金/Q235钢复合板示意图:(a)钢结硬质合金放置位置(熔结前);(b)金相取样位置(熔结后)

    Figure  1.  Schematic diagram of the steel bonded cemented carbide and Q235 steel composite plates: (a) placement locations of the steel bonded cemented carbides (before fusion); (b) sampling points of the metallographic sampls (after fusion)

    图  2  显微组织观察位置:(a)界面1;(b)界面2;(c)界面3和界面4

    Figure  2.  Observation position of the microstructures: (a) interface 1; (b) interface 2; (c) interface 3 and interface 4

    图  3  剪切试样示意图

    Figure  3.  Schematic diagram of the shear specimen

    图  4  复合板宏观形貌:(a)宏观形貌;(b)界面1;(c)界面2;(d)界面3和界面4

    Figure  4.  Macromorphology of the composite plates: (a) macromorphology; (b) interface 1; (c) interface 2; (c) interface 3 and interface 4

    图  5  界面1显微组织:(a)~(c)界面显微组织;(d)~(e)钢结硬质合金显微组织

    Figure  5.  Microstructures of the interface 1: (a)~(c) the interfacial microstructures; (d)~(e) the microstructures of steel-bonded cemented carbides

    图  6  互溶区面扫描结果

    Figure  6.  Area scanning results of the mutual dissolution zone

    图  7  界面2显微组织

    Figure  7.  Microstructures of the interface 2

    图  8  界面3((a)、(c)、(d))和界面4((b)、(e)、(f))显微组织

    Figure  8.  Microstructures of the interface 3 ((a), (c), (d)) and the interface 4 ((b), (e), (f))

    图  9  界面1线扫描结果

    Figure  9.  Line scanning results of the interface 1

    图  10  界面2中D区域线扫描结果

    Figure  10.  Line scanning results of the area D in the interface 2

    图  11  界面3线扫描结果

    Figure  11.  Line scanning results of the interface 3

    图  12  复合板界面处显微硬度分布:(a)界面1;(b)界面2;(c)界面3

    Figure  12.  Microhardness distribution of the composite plates: (a) interface 1; (b) interface 2; (c) interface 3

    表  1  钢结硬质合金化学成分(质量分数)

    Table  1.   Chemical composition of the steel bonded cemented carbides %

    TiCCMnNiMoFe
    50~580.8~2.18~101~30.6~3.0余量
    下载: 导出CSV

    表  2  图9对应位置化学成分(质量分数)

    Table  2.   Chemical composition of the locations in Fig.9 %

    元素ABCDEF
    Fe52.304665.797475.025190.963993.781397.4950
    Ti34.468925.175516.04811.204800
    C9.61924.91474.81443.01212.80842.4048
    Mn1.70342.70813.30994.05432.75850
    Ni0.90180.70210.60180.57860.50140
    Mo1.00200.70210.20060.18640.15030.1002
    下载: 导出CSV
  • [1] Zhu Y C. Microstructure and Mechanism of Interface Layer of Composite Casting Wear-Resiting Thin Plate Based on Liquid-Semisolid Bimetal Process [Dissertation]. Harbin: Harbin Institute of Technology, 2017

    朱永长. 液/半固态双金属铸造复合耐磨薄板界面层组织及形成机制[学位论文]. 哈尔滨: 哈尔滨工业大学, 2017
    [2] Ma H, Luo J. Preparation and high temperature oxidation properties of TiC−NiCrCoMo steel bonded cemented carbides. Powder Metall Technol, 2021, 39(2): 147

    马会, 罗骥. TiC‒NiCrCoMo钢结硬质合金的制备与高温氧化性能. 粉末冶金技术, 2021, 39(2): 147
    [3] Fan X P, Fan W. Research status and development tendency of steel bonded carbide. Foundry Technol, 2017, 38(3): 507

    范兴平, 范维. 钢结硬质合金研究现状与发展趋势. 铸造技术, 2017, 38(3): 507
    [4] Fan A P, Xiao P A, Li C K, et al. Research situation of TiC-based steel bonded carbide. Powder Metall Technol, 2013, 31(4): 298

    范安平, 肖平安, 李晨坤, 等. TiC基钢结硬质合金的研究现状. 粉末冶金技术, 2013, 31(4): 298
    [5] Gong H L. The Research of Technology on Torch Brazing Steel Bond Hard Alloy TM60 and Steel [Dissertation]. Zhengzhou: Zhengzhou University, 2013

    宫红亮. 钢结硬质合金TM60与钢火焰钎焊工艺的研究[学位论文]. 郑州: 郑州大学, 2013
    [6] Hou S Z, Bao C G, Han J D, et al. Abrasive wear behavior of steel bonded carbide/medium Cr steel composite. Mater Prot, 2019, 52(4): 20

    侯书增, 鲍崇高, 韩建东, 等. 钢结硬质合金/中铬钢复合材料的磨料磨损性能. 材料保护, 2019, 52(4): 20
    [7] Hou S Z, Bao C G, Han J D, et al. Wear behavior of medium Cr steel matrix composite localized reinforced by steel bonded carbide. Hot Working Technol, 2020, 49(22): 80

    侯书增, 鲍崇高, 韩建东, 等. 钢结硬质合金局域化增强中铬钢基复合材料的磨损性能. 热加工工艺, 2020, 49(22): 80
    [8] Wu Z X. Practical Technology of Vacuum Fusion of Surface Engineering. Beijing: Metallurgical Industry Press, 2016

    吴仲行. 真空熔结表面工程实用技术. 北京: 冶金工业出版社, 2016
    [9] Ma Z, Tao Y, Li H Y, et al. Process of vacuum fusion technology. Hot Working Technol, 2012, 41(18): 4

    马壮, 陶莹, 李海玉, 等. 真空熔结工艺研究进展. 热加工工艺, 2012, 41(18): 4
    [10] Dong G, Yan B, Li X, et al. Process in preparation methods of TiC reinforced Fe-based coating. Surf Technol, 2009, 38(1): 4

    董刚, 严彪, 李翔, 等. TiC增强铁基熔覆层制备方法的研究进展. 表面技术, 2009, 38(1): 4
    [11] Wang Z. Study on the Preparation and Properties of CrMo Steel Bonded Titanium Carbide [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    王志. TiC‒CrMo钢钢结硬质合金的制备与性能研究[学位论文]. 北京: 北京科技大学, 2017
    [12] Guo Y J, Guo D, Zhou T T, et al. Effect of dwelling time on microstructure and property of cemented carbide/steel joint fabricated by partial transient liquid phase bonding. Mater Mech Eng, 2018, 42(8): 7

    郭亚杰, 郭栋, 周婷婷, 等. 保温时间对部分瞬间液相连接硬质合金/钢接头组织与性能的影响. 机械工程材料, 2018, 42(8): 7
    [13] Hasan M, Zhao J, Huang Z, et al. Effects of holding time on the sintering of cemented tungsten carbide powder and bonding with high-strength steel wire. J Mater Eng Perform, 2019, 28(3): 4074
    [14] Aramian A, Sadeghian Z, Wan D, et al. Microstructure and texture evolution during the manufacturing of in situ TiC‒NiCr cermet through selective laser melting process. Mater Charact, 2021, 178: 111289 doi: 10.1016/j.matchar.2021.111289
    [15] Li Y X, Zhang X S, Zhu Z T, et al. Effect of element Ni diffusion on microstructure and mechanical properties of brazed joints of cemented carbide and steel. Rare Met Mater Eng, 2017, 46(4): 1120

    李远星, 张晓山, 朱宗涛, 等. Ni元素扩散行为对硬质合金/钢钎焊接头微观组织及力学性能的影响. 稀有金属材料与工程, 2017, 46(4): 1120
    [16] Cai X, Xu Y, Liu M, et al. Characterization of iron-based surface multilayer-structured tungsten carbide composite layers by EBSD and FIB/TEM. Surf Coat Technol, 2020, 403: 126365 doi: 10.1016/j.surfcoat.2020.126365
    [17] Zhao J Y, Sun Y F. Study on interface and structure of TiC steel bonded carbide and multicomponent low alloy steel by cast-sintering technique. Foundry, 2013, 62(5): 420

    赵靖宇, 孙玉福. 铸造烧结TiC钢结硬质合金/多元低合金钢复合界面及组织的研究. 铸造, 2013, 62(5): 420
    [18] Li S W, Shi J M, Xiong J T, et al. Microstructural characteristics and mechanical properties of WC‒Co/steel joints diffusion bonded utilizing Ni interlayer. Ceram Int, 2021, 47(4): 4446 doi: 10.1016/j.ceramint.2020.09.157
    [19] Guo B X, Dong Y, Wang Y, et al. Microstructure and properties of solid-liquid compound interface of 42CrMo steel/Al‒Si alloy. Spec Cast Nonferrous Alloys, 2022, 42(1): 93

    郭冰鑫, 董渊, 王宇, 等. 42CrMo钢/Al‒Si合金固-液复合界面结构及组织性能. 特种铸造及有色合金, 2022, 42(1): 93
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  455
  • HTML全文浏览量:  72
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回