超声振动辅助压制粗晶WC−10Co硬质合金

黄丽容 王云 谢俊杰 黄必华

黄丽容, 王云, 谢俊杰, 黄必华. 超声振动辅助压制粗晶WC−10Co硬质合金[J]. 粉末冶金技术, 2023, 41(6): 586-592. doi: 10.19591/j.cnki.cn11-1974/tf.2022030005
引用本文: 黄丽容, 王云, 谢俊杰, 黄必华. 超声振动辅助压制粗晶WC−10Co硬质合金[J]. 粉末冶金技术, 2023, 41(6): 586-592. doi: 10.19591/j.cnki.cn11-1974/tf.2022030005
HUANG Lirong, WANG Yun, XIE Junjie, HUANG Bihua. Pressing the coarse-grained WC−10Co cemented carbide assisted by ultrasonic vibration[J]. Powder Metallurgy Technology, 2023, 41(6): 586-592. doi: 10.19591/j.cnki.cn11-1974/tf.2022030005
Citation: HUANG Lirong, WANG Yun, XIE Junjie, HUANG Bihua. Pressing the coarse-grained WC−10Co cemented carbide assisted by ultrasonic vibration[J]. Powder Metallurgy Technology, 2023, 41(6): 586-592. doi: 10.19591/j.cnki.cn11-1974/tf.2022030005

超声振动辅助压制粗晶WC−10Co硬质合金

doi: 10.19591/j.cnki.cn11-1974/tf.2022030005
详细信息
    通讯作者:

    E-mail: 2282936277@qq.com

  • 中图分类号: TF124; TG375+.9

Pressing the coarse-grained WC−10Co cemented carbide assisted by ultrasonic vibration

More Information
  • 摘要: 为改善粗晶WC−10Co硬质合金在常规压制过程中粉末流动性差、颗粒大小分布不均匀以及合金力学性能差等问题,提出了一种纵向超声辅助压制的工艺方法,研究了压制力、高径比、预压超声时间以及超声振幅等因素对压坯密度、表面质量和合金力学性能的影响。结果表明,与常规压制相比,在超声振动作用下,粉末颗粒发生剧烈碰撞,颗粒间流动性增强,压制力在80~100 MPa之间,压力越大,密度增益越明显;减小高径比,增加预压超声时间,增大超声振幅,压坯密度提升显著;在超声振动作用下,压坯表面质量有所提升,压坯弹性后效下降0.16%;烧结后合金孔隙减少,晶粒大小分布均匀,粗大晶粒减少,在硬度和密度变化较小的情况下,断裂韧性提升了5.83%~16.10%,抗弯强度明显下降。
  • 图  1  实验用粗晶WC–10Co混合料粉末扫描电子显微形貌:(a)WC粉;(b)Co粉;(c)WC−10Co混合料

    Figure  1.  SEM images of the coarse-grained WC−10Co mixture powders for experiment: (a) WC powders; (b) Co powders; (c) WC−10Co mixture

    图  2  超声振动辅助压制装置

    Figure  2.  Ultrasonic vibration assisted pressing device

    图  3  压制力与密度之间的关系

    Figure  3.  Relationship between the compression force and density

    图  4  压坯密度与高径比之间的关系

    Figure  4.  Relationship between the density and aspect ratio

    图  5  预压超声时间与压坯密度之间关系

    Figure  5.  Relationship between the ultrasonic time of preloading and billet density

    图  6  压坯与模壁接触情况:(a)常规压制表面;(b)超声压制表面

    Figure  6.  Contact between the compact and die wall: (a) conventional pressed surface; (b) ultrasonic pressed surface

    图  7  脱模后压坯尺寸变化情况

    Figure  7.  Change of the compact size after demoulding

    图  8  合金横截面断口金相组织:(a)常规压制;(b)超声压制

    Figure  8.  Metallographic images of the alloy fracture in cross section: (a) conventional pressing; (b) ultrasonic pressing

    图  9  WC−10Co硬质合金扫描电子显微形貌和WC晶粒尺寸分布:(a),(b)常规压制;(c),(d)超声压制

    Figure  9.  SEM images and WC grain size distribution of the WC−10Co cemented carbides: (a), (b) conventional pressing; (c), (d) ultrasonic vibration pressing

    表  1  原始粉末性能参数

    Table  1.   Performance parameters of the raw powders

    原料费氏粒度 / μm质量分数 / %松装密度 /
    (g·cm−3)
    总碳游离碳
    WC9.66.110.010.015.7
    Co1.20.020.30
    下载: 导出CSV

    表  2  常规压制与超声压制WC−10Co硬质合金力学性能

    Table  2.   Mechanical properties of the WC−10Co cemented carbides by conventional pressing and ultrasonic pressing

    试样 密度 / (g·cm−3) 硬度,HV20 断裂韧性 / (MPa·m2) 抗弯强度 / MPa
    常规压制14.58115820.972544
    14.57117022.282556
    14.57116121.022420
    超声压制14.62116323.672427
    14.60115623.582150
    14.62115924.342356
    下载: 导出CSV
  • [1] Gao D Q, Liu X M, Feng H, et al. Study on microstructure evolution of ultra coarse-grained WC−8Co cemented carbide during cyclic compression. Chin J Stereol Image Anal, 2020, 25(2): 135

    高德强, 刘雪梅, 冯浩, 等. 超粗晶WC−8Co硬质合金循环压缩过程中组织演变的研究. 中国体视学与图像分析, 2020, 25(2): 135
    [2] He R, Li B, Ou P, et al. Effects of ultrafine WC on the densification behavior and microstructural evolution of coarse-grained WC−5Co cemented carbides. Ceram Int, 2020, 46(8): 12852 doi: 10.1016/j.ceramint.2020.01.113
    [3] Cao R J, Lin C G, Xie X C, et al. Microstructure and mechanical properties of WC−Co-based cemented carbide with bimodal WC grain size distribution. Rare Met, 2023, 42(8): 2809 doi: 10.1007/s12598-018-1025-y
    [4] Xu W, Chen Y B, Tang C R, et al. Preparation and formation mechanism of high performance cemented carbide with non-uniform structure. China Tungsten Ind, 2021, 36(1): 48 doi: 10.3969/j.issn.1009-0622.2021.01.008

    徐伟, 陈玉柏, 汤昌仁, 等. 高性能非均匀结构硬质合金的制备及其形成机理研究. 中国钨业, 2021, 36(1): 48 doi: 10.3969/j.issn.1009-0622.2021.01.008
    [5] Ignatieva L N, Zverev G A, Adamenko N A, et al. Peculiarities of the structure of copper- and nickel-fluoropolymer composites fabricated by explosive pressing. J Fluorine Chem, 2015, 172: 68 doi: 10.1016/j.jfluchem.2015.02.002
    [6] Asnaashari S, Ghambari M. Preparation and characterization of composite WC/Co through rapid omnidirectional compaction. J Alloys Compd, 2020, 859: 157764
    [7] Cao S H, Huang B Y, Qu X H, et al. Densification mechanism of warm compaction and powder mixture designing rules. J Cent South Univ Technol, 2000, 7(1): 4 doi: 10.1007/s11771-000-0002-3
    [8] Wang X, Qi Z, Chen W. Study on constitutive behavior of Ti−45Nb alloy under transversal ultrasonic vibration-assisted compression. Arch Civ Mech Eng, 2021, 21(1): 1 doi: 10.1007/s43452-020-00148-5
    [9] Bagherzadeh S, Abrinia K, Han Q. Analysis of plastic deformation behavior of ultrafine-grained aluminum processed by the newly developed ultrasonic vibration enhanced ECAP: Simulation and experiments. J Manuf Processes, 2020, 50: 485 doi: 10.1016/j.jmapro.2020.01.010
    [10] Du K, Huang J, Chen J, et al. Mechanical property and structure of polypropylene/aluminum alloy hybrid prepared via ultrasound-assisted hot-pressing technology. Materials, 2020, 13(1): 236 doi: 10.3390/ma13010236
    [11] Lin J, Li J, Liu T, et al. Evaluation of friction reduction and frictionless stress in ultrasonic vibration forming process. J Mater Process Technol, 2021, 288(7): 116881
    [12] Lv K, Yang K, Zhou B, et al. The densification and mechanical behaviors of large-diameter polymer-bonded explosives processed by ultrasonic-assisted powder compaction. Mater Des, 2021, 207: 109872 doi: 10.1016/j.matdes.2021.109872
    [13] Zhao Y B, Ma L, Liu B, et al. Analysis of vibration filling density of pure iron powder based on discrete element method. Powder Metall Technol, 2020, 38(6): 429 doi: 10.19591/j.cnki.cn11-1974/tf.2019070006

    赵艳波, 马麟, 刘波, 等. 基于离散元法的纯铁粉振动填充密度分析. 粉末冶金技术, 2020, 38(6): 429 doi: 10.19591/j.cnki.cn11-1974/tf.2019070006
    [14] Wang H L, Liu J, Lin L, et al. Analysis of relative density and force chain of powder with different particle size ratio based on discrete element method. Powder Metall Technol, 2021, 39(6): 490 doi: 10.19591/j.cnki.cn11-1974/tf.2019120014

    王海陆, 刘军, 林立, 等. 基于离散元的不同粒径配比粉末压制相对密度与力链分析. 粉末冶金技术, 2021, 39(6): 490 doi: 10.19591/j.cnki.cn11-1974/tf.2019120014
    [15] Jiang Y, Li X D. Meso simulation analysis of powder pressing. J Gansu Sci, 2020, 32(5): 56 doi: 10.16468/j.cnki.issn1004-0366.2020.05.012

    蒋煜, 李旭东. 粉末压制成形的细观模拟分析. 甘肃科学学报, 2020, 32(5): 56 doi: 10.16468/j.cnki.issn1004-0366.2020.05.012
    [16] Chen C X. Quality Control Principle of Cemented Carbide. Zhuzhou: Cemented Carbide Branch of China Tungsten Industry Association, 2007

    陈楚轩. 硬质合金质量控制原理. 株洲: 中国钨业协会硬质合金分会, 2007
    [17] Sedaghat H, Xu W, Zhang L. Ultrasonic vibration-assisted metal forming: Constitutive modelling of acoustoplasticity and applications. J Mater Process Technol, 2019, 265: 122 doi: 10.1016/j.jmatprotec.2018.10.012
    [18] Zhu J F, Zhang L, Xu T, et al. Parametric quantitative analysis of cemented carbide microstructure based on Image J software. Mater Sci Eng Powder Metall, 2015, 20(1): 26

    朱骥飞, 张立, 徐涛, 等. 基于Image J软件的硬质合金显微组织参数化定量分析. 粉末冶金材料科学与工程, 2015, 20(1): 26
    [19] Feng Z, Cheng D F, Li M H, et al. Effect of carbon content on morphology of coarse WC powder and properties of WC−8% Co alloy. Cement Carb, 2021, 38(3): 171

    冯志, 程登峰, 黎明华, 等. 碳化配碳量对粗颗粒WC粉末形貌及WC−8%Co合金性能的影响. 硬质合金, 2021, 38(3): 171
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  2036
  • HTML全文浏览量:  122
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 刊出日期:  2023-12-28

目录

    /

    返回文章
    返回