稀土Yb、Ce对钛铝合金高温抗氧化性能的影响

张小艳 罗铁钢 刘胜林 郑雪萍 王峰 马学琴 党岳辉

张小艳, 罗铁钢, 刘胜林, 郑雪萍, 王峰, 马学琴, 党岳辉. 稀土Yb、Ce对钛铝合金高温抗氧化性能的影响[J]. 粉末冶金技术, 2023, 41(3): 218-224. doi: 10.19591/j.cnki.cn11-1974/tf.2022030009
引用本文: 张小艳, 罗铁钢, 刘胜林, 郑雪萍, 王峰, 马学琴, 党岳辉. 稀土Yb、Ce对钛铝合金高温抗氧化性能的影响[J]. 粉末冶金技术, 2023, 41(3): 218-224. doi: 10.19591/j.cnki.cn11-1974/tf.2022030009
ZHANG Xiaoyan, LUO Tiegang, LIU Shenglin, ZHENG Xueping, WANG Feng, MA Xueqin, DANG Yuehui. Effect of rare earth Yb and Ce on high temperature oxidation resistance of TiAl alloys[J]. Powder Metallurgy Technology, 2023, 41(3): 218-224. doi: 10.19591/j.cnki.cn11-1974/tf.2022030009
Citation: ZHANG Xiaoyan, LUO Tiegang, LIU Shenglin, ZHENG Xueping, WANG Feng, MA Xueqin, DANG Yuehui. Effect of rare earth Yb and Ce on high temperature oxidation resistance of TiAl alloys[J]. Powder Metallurgy Technology, 2023, 41(3): 218-224. doi: 10.19591/j.cnki.cn11-1974/tf.2022030009

稀土Yb、Ce对钛铝合金高温抗氧化性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2022030009
基金项目: 广东省科学院支持老区苏区共建新型研发平台专项资助项目(2020GDASYL—20200503001-04);广东省科学院打造综合产业技术创新中心行动专项资助项目(2022GDASZH—2022010103);广东省科学院建设国内一流研究机构行动专项资金项目(2020GDASYL-20200101001)
详细信息
    通讯作者:

    E-mail: luotiegang2021@163.com (罗铁钢)

    liushenglinW@163.com (刘胜林)

  • 中图分类号: TF125.6;TG146.23

Effect of rare earth Yb and Ce on high temperature oxidation resistance of TiAl alloys

More Information
  • 摘要: 采用放电等离子烧结制备添加微量稀土元素的钛铝合金,研究稀土元素Yb、Ce对钛铝合金高温抗氧化性能的影响。利用金相显微镜、扫描电子显微镜和X射线衍射仪分析钛铝合金的组织结构、微观形貌和物相组成,通过高温氧化实验分析合金的高温抗氧化性能。结果表明:经放电等离子烧结制备的钛铝合金的相对密度最高可达99%。800 ℃高温氧化后的氧化动力学曲线均近似遵循抛物线规律;经过100 h的高温氧化处理后,Ti‒45Al、Ti‒45Al‒0.3Yb2O3和Ti‒45Al‒0.3CeO2三种合金的质量增重分别为14.63 g·m‒2、7.02 g·m‒2、8.19 g·m‒2。添加稀土元素的钛铝合金的高温抗氧化性能明显得到改善,其中添加Yb的钛铝合金的高温抗氧化性能提高约1倍。钛铝合金的氧化产物均具有典型层状结构,最外层为TiO2,第二层为TiO2+Al2O3混合氧化物。
  • 图  1  钛铝合金的X射线衍射图谱

    Figure  1.  XRD patterns of the TiAl alloys

    图  2  钛铝合金的显微形貌和金相组织:(a)Ti‒45Al;(b)Ti‒45Al‒0.3Yb2O3;(c)Ti‒45Al‒0.3CeO2;(d)Ti‒45Al;(e)Ti‒45Al‒0.3Yb2O3;(f)Ti‒45Al‒0.3CeO2

    Figure  2.  SEM images and metallographic images of TiAl alloys: (a) Ti−45Al; (b) Ti−45Al−0.3Yb2O3; (c) Ti−45Al−0.3CeO2; (d) Ti−45Al; (e) Ti−45Al−0.3Yb2O3; (f) Ti−45Al−0.3CeO2

    图  3  钛铝合金电子背散射衍射形貌和晶粒分布:(a)Ti‒45Al EBSD;(b)Ti‒45Al‒0.3Yb2O3 EBSD;(c)Ti‒45Al‒0.3CeO2 EBSD;(d)Ti‒45Al晶粒分布;(e)Ti‒45Al‒0.3Yb2O3晶粒分布;(f)Ti‒45Al‒0.3CeO2晶粒分布

    Figure  3.  EBSD and grain size distribution of TiAl alloys: (a) Ti‒45Al EBSD; (b) Ti‒45Al‒0.3Yb2O3 EBSD; (c) Ti‒45Al‒0.3CeO2 EBSD; (d) Ti‒45Al grain size distribution; (e) Ti‒45Al‒0.3Yb2O3 grain size distribution; (f) Ti‒45Al‒0.3CeO2 grain size distribution

    图  4  钛铝合金在800 ℃空气中氧化曲线:(a)单位面积质量变化;(b)氧化速率

    Figure  4.  Oxidation curves of the TiAl alloys at 800 ℃: (a) mass gain in unit area; (b) oxidation rate

    图  5  钛铝合金800 ℃在空气中氧化动力学曲线:(a)Ti‒45Al;(b)Ti‒45Al‒0.3Yb2O3;(c)Ti‒45Al‒0.3CeO2

    Figure  5.  Oxidation kinetics curves of the TiAl alloys oxidized at 800 ℃ in air: (a) Ti‒45Al; (b) Ti‒45Al‒0.3Yb2O3; (c) Ti‒45Al‒0.3CeO2

    图  6  800 ℃氧化50 h钛铝合金氧化表面X射线衍射图谱

    Figure  6.  XRD patterns of the TiAl alloys surface oxidized at 800 ℃ for 50 h

    图  7  800 ℃氧化100 h后钛铝合金氧化层表面显微形貌:(a)Ti‒45Al;(b)Ti‒45Al‒0.3Yb2O3;(c)Ti‒45Al‒0.3CeO2

    Figure  7.  Surface morphology of the TiAl alloys after oxidation at 800 ℃ for 100 h: (a)Ti‒45Al; (b)Ti‒45Al‒0.3Yb2O3; (c)Ti‒45Al‒0.3CeO2

    图  8  800 ℃氧化100 h后合金氧化层截面显微形貌和元素面分布能谱分析:(a)Ti‒45Al;(b)Ti‒45Al‒0.3Yb2O3;(c)Ti‒45Al‒0.3CeO2;(d)能谱分析

    Figure  8.  Microstructure in the cross section and EDS analysis of the alloys after oxidation at 800 ℃ for 100 h: (a) Ti‒45Al; (b) Ti‒45Al‒0.3Yb2O3; (c) Ti‒45Al‒0.3CeO2; (d) EDS analysis

    表  1  实验制备试样的化学成分(原子数分数)及相对密度

    Table  1.   Chemical compositions (atomic fraction) and relative density of the samples %

    试样编号化学成分相对密度
    1#Ti–45Al98.2
    2#Ti–45Al–0.3Yb2O399.5
    3#Ti–45Al–0.3CeO293.4
    下载: 导出CSV
  • [1] Fang H Z, Chen R R, Liu Y L, et al. Effects of niobium on phase composition and improving mechanical properties in TiAl alloy reinforced by Ti2AlC. Intermetallics, 2019, 115: 106630 doi: 10.1016/j.intermet.2019.106630
    [2] Zhua L, Li J S, Tang B, et al. Microstructure evolution and mechanical properties of diffusion bonding high Nb containing TiAl alloy to Ti2AlNb alloy. Vacuum, 2019, 164: 140 doi: 10.1016/j.vacuum.2019.03.010
    [3] Kim Y K, Youn S J, Kim S W, et al. High-temperature creep behavior of gamma Ti‒48Al‒2Cr‒2Nb alloy additively manufactured by electron beam melting. Mater Sci Eng, 2019, 763: 138138 doi: 10.1016/j.msea.2019.138138
    [4] Cakmak E, Nandwana P, Shin D, et al. A comprehensive study on the fabrication and characterization of Ti‒48Al‒2Cr‒2Nb preforms manufactured using electron beam melting. Materialia, 2019, 6: 100284 doi: 10.1016/j.mtla.2019.100284
    [5] Wang S J, Xu T, Liu M J, et al. Failure behavior and long-life design of thermal barrier coating: a review. Mater Res Appl, 2022, 16(1): 1 doi: 10.3969/j.issn.1673-9981.2022.01.003

    王斯佳, 徐彤, 刘梅军, 等. 热障涂层失效行为及长寿命设计研究现状. 材料研究与应用, 2022, 16(1): 1 doi: 10.3969/j.issn.1673-9981.2022.01.003
    [6] Gao C P, Luo T G, Liu S L, et al. Debinding and sintering properties of titanium alloys prepared by powder injection molding. Powder Metall Technol, 2022, 39(5): 410

    高春萍, 罗铁钢, 刘胜林, 等. 粉末注射成形钛合金的脱脂和烧结性能. 粉末冶金技术, 2022, 39(5): 410
    [7] Huang B, Li X, Xie X Q, et al. Effects of yttrium on the microstructure and high temperature oxidation behavior of Ti‒45Al‒6Nb alloys. Spec Cast Nonferrous Alloys, 2020, 40(8): 925

    黄波, 李轩, 谢小青, 等. Y对Ti‒45Al‒6Nb合金组织结构和高温氧化性能的影响. 特种铸造及有色合金, 2020, 40(8): 925
    [8] Xie X Q, Li X, Lü W, et al. Effect of Co on microstructure and high temperature oxidation resistance of Ti45Al‒8Nb‒03Y alloy. J Mater Eng, 2022, 50(1): 101

    谢小青, 李轩, 吕威, 等. Co对Ti45Al‒8Nb‒0.3Y合金组织结构和高温抗氧化性能的影响. 材料工程, 2022, 50(1): 101
    [9] Tian S W, He A R, Liu J H, et al. Oxidation resistance of TiAl alloy improved by hot-pack rolling and cyclic heat treatment. Mater Charact, 2021, 178: 111196 doi: 10.1016/j.matchar.2021.111196
    [10] Zou Q, Guan Y, Li Y G, et al. Advances and perspectives of TiAl alloy and its composites, J Yanshan Univ, 2020, 44(2): 95

    邹芹, 关勇, 李艳国, 等. TiAl合金及其复合材料的研究进展与发展趋势. 燕山大学学报, 2020, 44(2): 95
    [11] Dai J J, Zhu J Y, Chen C Z, et al. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. J Alloys Compd, 2016, 685: 784 doi: 10.1016/j.jallcom.2016.06.212
    [12] Chen L. Study on Microstructure Optimization and Creep Properties of TiAl Alloy Containing β Stable Element [Dissertation]. Beijing: University of Science and Technology Beijing, 2021

    陈林. 含β稳定元素TiAl合金组织优化及其蠕变性能研究[学位论文]. 北京: 北京科技大学, 2021
    [13] Wang K K, Luo T G, Dong Y H, et al. Effect of Y2O3 on microstructure and mechanical properties of Ti‒6Al‒4V alloy, Powder Metall Ind, 2020, 30(4): 26

    王昆昆, 罗铁钢, 董应虎, 等. Y2O3对Ti‒6Al‒4V合金显微组织及力学性能的影响. 粉末冶金工业, 2020, 30(4): 26
    [14] Zhao L L, Li G Y, Zhang L Q, et al. Influence of Y addition on the long time oxidation behaviors of high Nb containing TiAl alloys at 900 ℃. Intermetallics, 2010, 18: 1586 doi: 10.1016/j.intermet.2010.04.012
    [15] Shi J L, Pei J, Zhang B P, et al. Research progress on processing of thermoelectric materials by mechanical alloying combined with spark plasma sintering. Powder Metall Technol, 2021, 39(1): 4 doi: 10.19591/j.cnki.cn11-1974/tf.2020120005

    石建磊, 裴俊, 张波萍, 等. 机械合金化结合放电等离子烧结技术制备热电材料的研究进展. 粉末冶金技术, 2021, 39(1): 4 doi: 10.19591/j.cnki.cn11-1974/tf.2020120005
    [16] Shen D N, Wang C N, Gao P, et al. Ultrafine grained W‒Ti alloys prepared by spark plasma sintering. Powder Metall Technol, 2021, 39(2): 165 doi: 10.19591/j.cnki.cn11-1974/tf.2019110008

    沈丹妮, 王超宁, 高鹏, 等. 放电等离子烧结制备超细晶钨钛合金. 粉末冶金技术, 2021, 39(2): 165 doi: 10.19591/j.cnki.cn11-1974/tf.2019110008
    [17] Zheng Z B, Wang S, Long J, et al. Effect of rare earth elements on high temperature oxidation behaviour of austenitic steel. Corros Sci, 2020, 164: 108359 doi: 10.1016/j.corsci.2019.108359
    [18] Young D J. High Temperature Oxidation and Corrosion of Metals. Oxford: Elsevier Ltd. , 2008
    [19] Wei L L, Zheng J H, Chen L Q, et al. High temperature oxidation behavior of ferritic stainless steel containing W and Ce. Corros Sci, 2018, 142: 79 doi: 10.1016/j.corsci.2018.07.017
    [20] Zhou J, Effect of Nano-Y2O3 on High Temperature Properties and Heat Treatment Microstructure Transformation of Ti‒48Al‒2Cr‒2Nb Alloy [Dissertation]. Harbin: Harbin Institute of Technology, 2018

    周俊. 纳米Y2O3对Ti‒48Al‒2Cr‒2Nb合金高温性能及热处理组织转变的影响[学位论文]. 哈尔滨: 哈尔滨工业大学, 2018
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  44
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 刊出日期:  2023-06-28

目录

    /

    返回文章
    返回