面向等离子体材料用先进钨复合材料的改性研究进展与趋势

罗来马 颜硕 刘祯 昝祥 吴玉程

罗来马, 颜硕, 刘祯, 昝祥, 吴玉程. 面向等离子体材料用先进钨复合材料的改性研究进展与趋势[J]. 粉末冶金技术, 2023, 41(1): 12-29. doi: 10.19591/j.cnki.cn11-1974/tf.2022030012
引用本文: 罗来马, 颜硕, 刘祯, 昝祥, 吴玉程. 面向等离子体材料用先进钨复合材料的改性研究进展与趋势[J]. 粉末冶金技术, 2023, 41(1): 12-29. doi: 10.19591/j.cnki.cn11-1974/tf.2022030012
LUO Laima, YAN Shuo, LIU Zhen, ZAN Xiang, WU Yucheng. Research progress and trend of advanced tungsten composite modification used for plasma facing materials[J]. Powder Metallurgy Technology, 2023, 41(1): 12-29. doi: 10.19591/j.cnki.cn11-1974/tf.2022030012
Citation: LUO Laima, YAN Shuo, LIU Zhen, ZAN Xiang, WU Yucheng. Research progress and trend of advanced tungsten composite modification used for plasma facing materials[J]. Powder Metallurgy Technology, 2023, 41(1): 12-29. doi: 10.19591/j.cnki.cn11-1974/tf.2022030012

面向等离子体材料用先进钨复合材料的改性研究进展与趋势

doi: 10.19591/j.cnki.cn11-1974/tf.2022030012
基金项目: 国家重点研发磁约束聚变能发展专项资助项目(2019YFE03120002);安徽省重点研发项目(202104a05020045);安徽省自然基金杰出青年基金资助项目(2108085J21)
详细信息
    通讯作者:

    E-mail: luolaima@126.com

  • 中图分类号: TG146.1

Research progress and trend of advanced tungsten composite modification used for plasma facing materials

More Information
  • 摘要: 核聚变能是解决未来社会能源危机的有效途径之一,但面向等离子体材料在聚变堆体中面临着来自等离子体严重的辐照和热冲击损伤。纯钨因其高热导率、良好的高温强度、低溅射和低蒸气压而被认为是最有希望的面向等离子体候选材料。纯钨在聚变堆工况条件下具有严重的脆性风险,因而对面向等离子体材料用先进钨材料的改性成为近年来的研究热点。钨基复合材料的改性方法主要包括合金化、第二相强化、纤维增韧和复合强化。本文综述了近年来国内外针对核聚变反应堆面向等离子体材料用钨基复合材料的改性方法及其性能,分析了钨基复合材料的改性机制,并展望了面向等离子体材料用钨基复合材料的发展方向。
  • 图  1  Re掺杂对W基体中位错–核心对称性结构的影响[25]

    Figure  1.  Effect of Re doping on the dislocations–core symmetry structure in W matrix[25]

    图  2  W和W15Re在<100>、<110>和<111>方向上的拉伸应力–应变曲线[26]

    Figure  2.  Tensile stress-strain curves of W and W15Re in <100>, <110>, and <111> directions[26]

    图  3  工业纯W、W5Re和W10Re三种测试材料在恒定压痕应变速率下的硬度随相应温度(T/Tm)的变化[27]

    Figure  3.  Evolution of hardness with the homologous temperature (T/Tm) for the industrial pure W, W5Re, and W10Re at the constant indentation strain rates[27]

    图  4  W‒K合金中钾泡三种复合形式:(a)晶间型;(b)晶内型;(c)晶间/晶内型[16]

    Figure  4.  Three forms of the potassium bubbles in W‒K alloys: (a) inter-type; (b) intra-type; (c) inter/intra-type[16]

    图  5  (a)放电等离子烧结制备W–K合金硬度与烧结温度和压力的关系及(b)其金相组织[31]

    Figure  5.  (a)Relationship of the hardness, sintering temperature, and pressure of the W–K alloys prepared by SPS and(b) the corresponding metallographic microstructures [31]

    图  6  (a)W–5%Mo(质量分数)合金1450 ℃非等温烧结过程中科肯达尔孔隙引起的膨胀和显微组织以及(b)1600 ℃放电等离子烧结W–5%Mo合金相对密度与温度的关系和显微组织[32]

    Figure  6.  Expansion and microstructure of the W–5%Mo alloys (mass fraction) caused by Kirkendal pores in the non-isothermal sintering at 1450 ℃ (a) and the relationship between the relative density and temperature and the corresponding microstructure of the W–5%Mo alloys prepared by SPS at 1600 ℃ (b)[32]

    图  7  纯W和W–5%Ta(质量分数)合金在不同剂量He+辐照下的结构损伤[33]

    Figure  7.  Structural damage between pure W and W–5%Ta alloys (mass fraction) irradiated with different doses of He+[33]

    图  8  不同辐照能量的W–Nb合金扫描电镜形貌[34]:(a)50 eV;(b)80 eV

    Figure  8.  SEM images of the W–Nb alloys with different irradiation energies[34]: (a) 50 eV; (b) 80 eV

    图  9  不同氦能W25富钨区高倍透射电镜形貌[34]:(a)50 eV;(b)80 eV

    Figure  9.  High-magnification TEM images of W25 in the tungsten rich region with different helium energies[34]: (a) 50 eV; (b) 80 eV

    图  10  W–Y2O3合金显微形貌[37]:(a)表面结构;(b)室温断口形貌

    Figure  10.  SEM images of the W–Y2O3 alloys[37]: (a) surface structure; (b) fracture morphology at room-temperature

    图  11  冷冻干燥样品微观结构及粒度分布[38]:(a)不添加分散剂微观结构;(b)不添加分散剂粒度分布;(c)添加分散剂微观结构;(d)添加分散剂粒度分布

    Figure  11.  SEM images and particle size distribution of the freeze-dried samples[38]: (a) SEM images without dispersant; (b) particle size distribution without dispersant; (c) SEM images with dispersant; (d) particle size distribution with dispersant

    图  12  纯W和W–2%Y2O3复合材料经氦离子辐照后表面形貌[39]:(a)纯W表面辐照区;(b)纯W表面非辐照区;(c)W–2%Y2O3表面辐照区;(d)W–2%Y2O3表面非辐照区

    Figure  12.  Surface morphology of the pure tungsten and W–2%Y2O3 composites irradiated by helium ions[39]: (a) pure tungsten surface in irradiated zone; (b) pure tungsten surface in non-irradiated zone; (c) W–2%Y2O3 surface in irradiated zone; (d) W–2%Y2O3 surface in non-irradiation zone

    图  13  纯W和W–La2O3合金横截面显微形貌[41]:(a)纯W;(b)0.1% La2O3掺杂W合金;(c)1.0% La2O3掺杂W合金;(d)5.0% La2O3掺杂W合金

    Figure  13.  Cross-sectional images of the W and W–La2O3 alloys[41]: (a) pure W; (b) 0.1% La2O3 doped W alloys; (c) 1.0% La2O3 doped W alloys; (d) 5.0% La2O3 doped W alloys

    图  14  不同碳化物掺杂钨合金高温退火后表面显微形貌[43]:(a)W–10TaC,1600 ℃;(b)W–10ZrC,1600 ℃;(c)W–10TiC,8 h;(d)W–10ZrC,8 h

    Figure  14.  SEM images of the W alloys doped by different carbides after high-temperature annealing[43]: (a) W–10TaC, 1600℃; (b) W–10ZrC, 1600 ℃; (c) W–10TiC, 8 h; (d) W–10ZrC, 8 h

    图  15  不同烧结温度下W–0.5ZrC复合材料相对密度[44]

    Figure  15.  Relative density of the W–0.5ZrC composites at different sintering temperatures[44]

    图  16  不同热流密度热冲击后W–ZrC试样的表面及加载区裂纹形貌[45]:(a)0.22 GW·m−2;(b)0.33 GW·m−2;(c)0.44 GW·m−2;(d)0.22 GW·m−2;(e)0.33 GW·m−2;(f)0.44 GW·m−2;(g)0.22 GW·m−2裂纹深度;(h)0.33 GW·m−2裂纹深度;(i)0.44 GW·m−2裂纹深度

    Figure  16.  Surface and crack morphology in the loaded areas of the W–ZrC samples after 100 shots with the different heat flux[45]: (a) 0.22 GW·m−2; (b) 0.33 GW·m−2; (c) 0.44 GW·m−2; (d) 0.22 GW·m−2; (e) 0.33 GW·m−2; (f) 0.44 GW·m−2; (g) cracking depth at 0.22 GW·m−2; (h) cracking depth at 0.33 GW·m−2; (i) cracking depth at 0.44 GW·m−2

    图  17  不同热流密度下试样裂纹宽度扫描电子显微形貌[45]:(a)0.33 GW·m−2;(b)0.44 GW·m−2

    Figure  17.  SEM images of the crack width with the different heat flux[45]: (a) 0.33 GW·m−2; (b) 0.44 GW·m−2

    图  18  应变速率5×10−4 s−1下热等静压压坯拉伸伸长率随TiC质量分数的变化[46]:(a)W–(0~1.5)TiC–H2;(b)W–(0~1.5)TiC–Ar

    Figure  18.  Tensile elongation at the medium strain rate of 5×10−4 s−1 for the hot isostatic pressing compacts as the function of TiC mass fraction[46]: (a) W–(0~1.5)TiC–H2; (b) W–(0~1.5)TiC–Ar

    图  19  钨纤维增韧钨基复合材料光学显微形貌[48]

    Figure  19.  Optical image of the tungsten matrix composites toughened by tungsten fibers[48]

    图  20  纯W及其合金在500 ℃下的应力–应变曲线[53]

    Figure  20.  Stress-strain curves of the pure W and the alloys tested at 500 ℃[53]

    图  21  添加TiC的W–K–TiC合金抗拉强度、维氏显微硬度与晶粒尺寸平方根倒数关系[54]

    Figure  21.  Relationship of the tensile strength, Vickers micro-hardness, and the square root reciprocal of grain size for the W–K–TiC alloys with TiC addition[54]

    图  22  W–ZrC–Re试样在不同温度下退火后的断裂表面微观形貌[57]

    Figure  22.  SEM images of the fracture surface for the W–ZrC–Re samples after annealing at different temperatures[57]

    图  23  W–Y2O3合金中W晶界氧化物粒子透射电镜高角环形暗场相(high angle annular dark field,HAADF)和能量色散X射线光谱[58]:(a)La3+掺杂HAADF;(b)La3+掺杂EDX;(c)Hf4+掺杂HAADF;(d)Hf4+掺杂EDX

    Figure  23.  HAADF images and EDX of the oxide particles at W grain boundary for W–Y2O3 alloys[58]: (a) HAADF of La3+ doping; (b) EDX of La3+ doping; (c) HAADF of Hf4+ doping; (d) EDX of Hf4+ doping

    图  24  试样断口扫描电子显微形貌和平均晶粒尺寸[59]:(a)W–1TiC;(b)不同Ti含量W–1TiC–xTi平均晶粒尺寸;(c)W–1TiC–0.5Ti;(d)W–1TiC–0.7Ti

    Figure  24.  SEM micrographs of the fracture surface and the average grain size of samples[59]: (a) W–1TiC; (b) the average grain size of the W–1TiC–xTi samples with different Ti contents; (c) W–1TiC–0.5Ti; (d) W–1TiC–0.7Ti

    表  1  纯W和W–2%Y2O3在氦离子辐照下不同区域的表面粗糙度[39]

    Table  1.   Surface roughness of pure tungsten and W–2%Y2O3 in different regions under helium ion irradiation[39]

    试样辐照区 / nm非辐照区 / nm
    纯W138.5±3.584.0±3.5
    W–2%Y2O3136.5±3.0120.5±3.5
    下载: 导出CSV

    表  2  放电等离子烧结W–3Re–xHfC复合材料的测量密度、理论密度、相对密度和维氏硬度[55]

    Table  2.   Measurement density, theoretical density, relative density, and Vickers hardness of W–3Re–xHfC composites prepared by SPS[55]

    试样平均晶粒尺寸 / μm测量密度 / (g·cm−3)理论密度 / (g·cm−3)相对密度 / %维氏硬度,HV抗压强度 / MPa
    W–Re8.81±0.1518.9219.4097.5342.6±12.5250.43±8.61
    W–Re–0.5HfC7.63±0.2018.9419.3597.9369.4±10.3305.26±12.42
    W–Re–1.0HfC5.82±0.1818.9519.2498.5381.8±13.4400.15±11.05
    W–Re–5.0HfC3.85±0.1218.5718.8198.8447.1±8.6605.28±10.61
    W–Re–10.0HfC2.14±0.1317.6818.3896.2659.4±15.3852.35±5.62
    下载: 导出CSV
  • [1] Asgarian M A, Seyedhabashi M M R, Bidabadi B S, et al. Radiation damage of tungsten surface irradiated with high-energy hydrogen and helium beams of plasma focus device. Fusion Eng Des, 2020, 160: 112007 doi: 10.1016/j.fusengdes.2020.112007
    [2] Yu M. Effects of Deformation Ratio and Annealing Temperature on the Recrystallization Behavior of Pure Tunsten [Dissertation]. Hefei: Hefei University of Technology, 2017

    余明. 变形量和温度对纯钨再结晶特性影响研究[学位论文]. 合肥: 合肥工业大学, 2017
    [3] Neu R, Hopf C, Kallenbach A, et al. Operational conditions in a W-clad tokamak. J Nucl Mater, 2007, 367: 1497
    [4] Travere J M, Aumeunier M H, Joanny M, et al. Imaging challenges for ITER plasma-facing component protection. Fusion Sci Technol, 2013, 64(4): 735 doi: 10.13182/FST13-A24093
    [5] Matthews G F. Material migration in divertor tokamaks. J Nucl Mater, 2005, 337(1-3): 1
    [6] Philipps V. Tungsten as material for plasma-facing components in fusion devices. J Nucl Mater, 2011, 415(1): S2 doi: 10.1016/j.jnucmat.2011.01.110
    [7] Hu W, Du Z, Dong Z, et al. The synthesis of TiC dispersed strengthened Mo alloy by freeze-drying technology and subsequent low temperature sintering. Scr Mater, 2021, 198: 113831 doi: 10.1016/j.scriptamat.2021.113831
    [8] Ren C, Koopman M, Fang Z Z, et al. A study on the sintering of ultrafine grained tungsten with Ti-based additives. Int J Refract Met Hard Mater, 2017, 65: 2 doi: 10.1016/j.ijrmhm.2016.11.013
    [9] Dong Z, Ma Z, Liu Y. Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature. Acta Mater, 2021, 220: 117309 doi: 10.1016/j.actamat.2021.117309
    [10] Ren C, Fang Z Z, Koopman M, et al. Methods for improving ductility of tungsten-A review. Int J Refract Met Hard Mater, 2018, 75: 170 doi: 10.1016/j.ijrmhm.2018.04.012
    [11] Dong Z, Hu W, Ma Z, et al. The synthesis of composite powder precursors via chemical processes for the sintering of oxide dispersion-strengthened alloys. Mater Chem Front, 2019, 3(10): 1952 doi: 10.1039/C9QM00422J
    [12] Liu N, Dong Z, Ma Z, et al. Influence of yttrium addition on the reduction property of tungsten oxide prepared via wet chemical method. Acta Metall Sinica, 2020, 33(2): 275 doi: 10.1007/s40195-019-00975-3
    [13] Wang Z, Wu H, Zhu T, et al. Defects introduced by helium irradiation at different temperatures in W and W–5wt%Re alloy. Fusion Eng Des, 2021, 172: 112746 doi: 10.1016/j.fusengdes.2021.112746
    [14] Bonny G, Bakaev A, Terentyev D, et al. Elastic properties of the sigma W–Re phase: A first principles investigation. Scr Mater, 2017, 128: 45 doi: 10.1016/j.scriptamat.2016.09.039
    [15] Zhang T, Deng H W, Xie Z M, et al. Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces. J Mater Sci Technol, 2020, 52: 29 doi: 10.1016/j.jmst.2020.02.046
    [16] Huang B, Tang J, Chen L Q, et al. Design of highly thermal-shock resistant tungsten alloys with nanoscaled intra- and inter-type K bubbles. J Alloys Compd, 2019, 782: 149 doi: 10.1016/j.jallcom.2018.12.168
    [17] Luo L M, Huang K, Zan X, et al. Research and development of alloy modified tungsten-based materials. Chin J Mech Eng, 2018, 54(8): 117 doi: 10.3901/JME.2018.08.117

    罗来马, 黄科, 昝祥, 等. 合金化改性钨基材料的组织和性能研究与发展. 机械工程学报, 2018, 54(8): 117 doi: 10.3901/JME.2018.08.117
    [18] Tan X Y, Li P, Luo L M, et al. Effect of second-phase particles on the properties of W-based materials under high-heat loading. Nucl Mater Energy, 2016, 9: 399 doi: 10.1016/j.nme.2016.07.009
    [19] Butler B G, Paramore J D, Ligda J P, et al. Mechanisms of deformation and ductility in tungsten-A review. Int J Refract Met Hard Mater, 2018, 75: 248 doi: 10.1016/j.ijrmhm.2018.04.021
    [20] Webb J, Gollapudi S, Charit I. An overview of creep in tungsten and its alloys. Int J Refract Met Hard Mater, 2019, 82: 69 doi: 10.1016/j.ijrmhm.2019.03.022
    [21] Mao Y, Coenen J W, Riesch J, et al. Influence of the interface strength on the mechanical properties of discontinuous tungsten fiber-reinforced tungsten composites produced by field assisted sintering technology. Composites Part A, 2018, 107: 342 doi: 10.1016/j.compositesa.2018.01.022
    [22] Waseem O A, Ryu H J. Toughening of a low-activation tungsten alloy using tungsten short fibers and particles reinforcement for fusion plasma-facing applications. Nucl Fusion, 2019, 59(2): 026007 doi: 10.1088/1741-4326/aaf43f
    [23] Kang K, Tu R, Luo G, et al. Synergetic effect of Re alloying and SiC addition on strength and toughness of tungsten. J Alloys Compd, 2018, 767: 1064 doi: 10.1016/j.jallcom.2018.07.156
    [24] Dong L, Chen W, Zheng C, et al. Microstructure and properties characterization of tungsten-copper composite materials doped with graphene. J Alloys Compd, 2017, 695: 1637 doi: 10.1016/j.jallcom.2016.10.310
    [25] Mutoh Y, Ichikawa K, Nagata K, et al. Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures. J Mater Sci, 1995, 30(3): 770 doi: 10.1007/BF00356341
    [26] Wang Q, Du G P, Chen N, et al. Ideal strengths and thermodynamic properties of W and W–Re alloys from first-principles calculation. Fusion Eng Des, 2020, 155: 111579 doi: 10.1016/j.fusengdes.2020.111579
    [27] Kappacher J, Leitner A, Kiener D, et al. Thermally activated deformation mechanisms and solid solution softening in W–Re alloys investigated via high temperature nanoindentation. Mater Des, 2020, 189: 108499 doi: 10.1016/j.matdes.2020.108499
    [28] Ravi K V, Gibala R. The strength of niobium-oxygen solid solutions. Acta Metall, 1970, 18(6): 623 doi: 10.1016/0001-6160(70)90091-X
    [29] Schade P, Ortner H M, Smid I. Refractory metals revolutionizing the lighting technology: A historical review. Int J Refract Met Hard Mater, 2015, 50: 23 doi: 10.1016/j.ijrmhm.2014.11.002
    [30] Shu X, Qiu H, Huang B, et al. Preparation and characterization of potassium doped tungsten. J Nucl Mater, 2013, 440(1): 414
    [31] Shu X, Huang B, Liu D, et al. Effects of low energy helium plasma irradiation on potassium doped tungsten. Fusion Eng Des, 2017, 117: 8 doi: 10.1016/j.fusengdes.2017.02.004
    [32] Srivastav A K, Chawake N, Yadav D, et al. Localized pore evolution assisted densification during spark plasma sintering of nanocrystalline W–5wt.%Mo alloy. Scr Mater, 2019, 159: 41 doi: 10.1016/j.scriptamat.2018.09.013
    [33] Ipatova I, Greaves G, Pacheco-Gutiérrez S, et al. In-situ TEM investigation of nano-scale helium bubble evolution in tantalum-doped tungsten at 800 ℃. J Nucl Mater, 2021, 550: 152910 doi: 10.1016/j.jnucmat.2021.152910
    [34] Xu M Y, Luo L M, Zhou Y F, et al. Helium irradiation behavior of tungsten-niobium alloys under different ion energies. Fusion Eng Des, 2018, 132: 7 doi: 10.1016/j.fusengdes.2018.05.015
    [35] Shen D N, Wang C N, Gao P, et al. Ultrafine grained W–Ti alloys prepared by spark plasma sintering. Powder Metall Technol, 2021, 39(2): 165 doi: 10.19591/j.cnki.cn11-1974/tf.2019110008

    沈丹妮, 王超宁, 高鹏, 等. 放电等离子烧结制备超细晶钨钛合金. 粉末冶金技术, 2021, 39(2): 165 doi: 10.19591/j.cnki.cn11-1974/tf.2019110008
    [36] Luo L M, Zhao Z H, Yao G, et al. Recent progress on preparation routes and performance evaluation of ODS/CDS–W alloys for plasma facing materials in fusion devices. J Nucl Mater, 2021, 548: 152857 doi: 10.1016/j.jnucmat.2021.152857
    [37] Tan X Y, Luo L M, Chen H Y, et al. Mechanical properties and microstructural change of W–Y2O3 alloy under helium irradiation. Sci Rep, 2015, 5: 12755 doi: 10.1038/srep12755
    [38] Hu W Q, Dong Z, Wang H, et al. Microstructure refinement and mechanical properties improvement in the W–Y2O3 alloys via optimized freeze-drying. Int J Refractory Met Hard Mater, 2021, 95: 105453 doi: 10.1016/j.ijrmhm.2020.105453
    [39] Yao G, Luo L M, Tan X Y, et al. Effect of Y2O3 particles on the helium ion irradiation damage of W–2%Y2O3 composite prepared by wet chemical method. Materialia, 2019, 6: 100268 doi: 10.1016/j.mtla.2019.100268
    [40] Yang J, Gang C, Zheng C, et al. Effects of doping route on microstructure and mechanical properties of W–1.0wt.%La2O3 alloys. Trans Nonferrous Met Soc China, 2020, 30(12): 3296 doi: 10.1016/S1003-6326(20)65462-0
    [41] Liu L, Li S Z, Liu D P, et al. Surface damages of polycrystalline W and La2O3-doped W induced by high-flux He plasma irradiation. J Nucl Mater, 2018, 501: 275 doi: 10.1016/j.jnucmat.2018.01.047
    [42] Liu R, Xie Z M, Yang J F, et al. Recent progress on the R&D of W–ZrC alloys for plasma facing components in fusion devices. Nucl Mater Energy, 2018, 16: 191 doi: 10.1016/j.nme.2018.07.002
    [43] Lang E, Schamis H, Madden N, et al. Recrystallization suppression through dispersion-strengthening of tungsten. J Nucl Mater, 2021, 545: 152613 doi: 10.1016/j.jnucmat.2020.152613
    [44] Li P, Fan J, Han Y, et al. Microstructure evolution and properties of tungsten reinforced by additions of ZrC. Rare Met Mater Eng, 2018, 47(6): 1695 doi: 10.1016/S1875-5372(18)30152-8
    [45] Wang M M, Deng H W, Wang H, et al. Fabrication and stability of ultrafine ZrC nanoparticles dispersion strengthened sub-micrometer grained W alloy. Fusion Eng Des, 2021, 169: 112483 doi: 10.1016/j.fusengdes.2021.112483
    [46] Kurishita H, Matsuo S, Arakawa H, et al. High temperature tensile properties and their application to toughness enhancement in ultra-fine grained W–(0-1.5)wt% TiC. J Nucl Mater, 2009, 386-388: 579 doi: 10.1016/j.jnucmat.2008.12.181
    [47] Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility. Acta Metall Sinica, 2019, 55(2): 171 doi: 10.11900/0412.1961.2018.00404

    吴玉程. 面向等离子体W材料改善韧性的方法与机制. 金属学报, 2019, 55(2): 171 doi: 10.11900/0412.1961.2018.00404
    [48] Gietl H, Riesch J, Coenen J W, et al. Tensile deformation behavior of tungsten fibre-reinforced tungsten composite specimens in as-fabricated state. Fusion Eng Des, 2017, 124: 396 doi: 10.1016/j.fusengdes.2017.02.054
    [49] Gietl H, Riesch J, Coenen J W, et al. Production of tungsten-fibre reinforced tungsten composites by a novel continuous chemical vapour deposition process. Fusion Eng Des, 2019, 146: 1426 doi: 10.1016/j.fusengdes.2019.02.097
    [50] Zhang L, Jiang Y, Fang Q, et al. Comparative investigation of tungsten fibre nets reinforced tungsten composite fabricated by three different methods. Metals, 2017, 7(7): 249 doi: 10.3390/met7070249
    [51] Chen L, Qiu W, Deng H, et al. Annealing induced shrinkage-fill effect of tungsten-potassium alloys with trace titanium doping. Int J Refract Met Hard Mater, 2020, 90: 105193 doi: 10.1016/j.ijrmhm.2020.105193
    [52] Miyazawa T, Garrison L M, Geringer J W, et al. Neutron irradiation effects on the mechanical properties of powder metallurgical processed tungsten alloys. J Nucl Mater, 2020, 529: 151910 doi: 10.1016/j.jnucmat.2019.151910
    [53] Miyazawa T, Garrison L M, Geringer J W, et al. Tensile properties of powder-metallurgical-processed tungsten alloys after neutron irradiation near recrystallization temperatures. J Nucl Mater, 2020, 542: 152505 doi: 10.1016/j.jnucmat.2020.152505
    [54] Shi K, Huang B, He B, et al. Room-temperature tensile strength and thermal shock behavior of spark plasma sintered W–K–TiC alloys. Nucl Eng Technol, 2019, 51(1): 190 doi: 10.1016/j.net.2018.09.015
    [55] Li Y C, Zhang W, Li J F, et al. Microstructure and high temperature mechanical properties of advanced W–3Re alloy reinforced with HfC particles. Mater Sci Eng A, 2021, 814: 141198 doi: 10.1016/j.msea.2021.141198
    [56] Zhang J, Tian Y, Zhu J, et al. Microstructure and mechanical properties of HfC reinforced W matrix composites regulated by trace Zr. Int J Refract Met Hard Mater, 2020, 86: 105096 doi: 10.1016/j.ijrmhm.2019.105096
    [57] Zhao B L, Xie Z M, Liu R, et al. Fabrication of an ultrafine-grained W–ZrC–Re alloy with high thermal stability. Fusion Eng Des, 2021, 164: 112208 doi: 10.1016/j.fusengdes.2020.112208
    [58] Dong Z, Ma Z Q, Yu L M, et al. Enhanced mechanical properties in oxide-dispersion-strengthened alloys achieved via interface segregation of cation dopants. Sci China Mater, 2021, 64(4): 987 doi: 10.1007/s40843-020-1481-0
    [59] Zhang Z W, Zhao S Q, Lü Y Q, et al. Modification of microstructure and performance via doping Ti in W–1TiC fine-grained alloy. Mater Sci Eng A, 2021, 825: 141918 doi: 10.1016/j.msea.2021.141918
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  581
  • HTML全文浏览量:  95
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-07
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回