粉末特性对30CrMnSiNi2A钢组织和性能的影响

李洁 刘文胜 蔡青山 段有腾 朱文谭 马运柱

李洁, 刘文胜, 蔡青山, 段有腾, 朱文谭, 马运柱. 粉末特性对30CrMnSiNi2A钢组织和性能的影响[J]. 粉末冶金技术, 2022, 40(5): 441-450. doi: 10.19591/j.cnki.cn11-1974/tf.2022030015
引用本文: 李洁, 刘文胜, 蔡青山, 段有腾, 朱文谭, 马运柱. 粉末特性对30CrMnSiNi2A钢组织和性能的影响[J]. 粉末冶金技术, 2022, 40(5): 441-450. doi: 10.19591/j.cnki.cn11-1974/tf.2022030015
LI Jie, LIU Wen-sheng, CAI Qing-shan, DUAN You-teng, ZHU Wen-tan, MA Yun-zhu. Effect of powder characteristics on microstructure and properties of 30CrMnSiNi2A steels[J]. Powder Metallurgy Technology, 2022, 40(5): 441-450. doi: 10.19591/j.cnki.cn11-1974/tf.2022030015
Citation: LI Jie, LIU Wen-sheng, CAI Qing-shan, DUAN You-teng, ZHU Wen-tan, MA Yun-zhu. Effect of powder characteristics on microstructure and properties of 30CrMnSiNi2A steels[J]. Powder Metallurgy Technology, 2022, 40(5): 441-450. doi: 10.19591/j.cnki.cn11-1974/tf.2022030015

粉末特性对30CrMnSiNi2A钢组织和性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2022030015
基金项目: 国家自然科学基金资助项目(51701242)
详细信息
    通讯作者:

    E-mail: zhuzipm@csu.edu.cn

  • 中图分类号: TG142.1

Effect of powder characteristics on microstructure and properties of 30CrMnSiNi2A steels

More Information
  • 摘要: 采用水雾化(water atomization,WA)、气雾化(gas atomization,GA)和等离子旋转电极雾化(plasma rotating electrode process,PREP)方式制备30CrMnSiNi2A钢粉,对比分析了不同雾化粉末的特征及其烧结体的组织与性能。结果表明:不同雾化粉末的形貌、粒度分布、氧含量及流动性等特征均存在一定差异,其中水雾化和气雾化粉末中存在空心粉和卫星粉,等离子旋转电极雾化粉末无内部缺陷,具有优异流动性,且氧含量最低。三种雾化粉末的烧结样品组织均为粒状贝氏体,但呈现出不同的原始颗粒边界形貌,随粉末氧含量的降低,原始颗粒边界处夹杂物尺寸减小,成分由富Al氧化物变为富Al、Si氧化物。相比于水雾化和气雾化粉末,等离子旋转电极雾化粉末的烧结样品拉伸性能最优,其拉伸强度和伸长率分别为1310 MPa和11.5%,这得益于良好的粉末质量和低的氧含量。
  • 图  1  雾化粉末扫描电子显微形貌:(a)、(d)WA粉;(b)、(e)GA粉;(c)、(f)PREP粉

    Figure  1.  SEM images of the atomized powders: (a), (d) WA powders; (b), (e) GA powders; (c), (f) PREP powders

    图  2  雾化粉末截面的背散射电子扫描图:(a)WA粉;(b)GA粉;(c)PREP粉

    Figure  2.  Backscattered electron scanning images of the atomized powders cross section: (a) WA powders; (b) GA powders; (c) PREP powders

    图  3  3种雾化粉末的粒度分布

    Figure  3.  Particle size distribution of the atomized powders

    图  4  采用不同雾化粉经过热等静压后样品的微观组织:(a)WA粉;(b)GA粉;(c)PREP粉

    Figure  4.  SEM images of the samples after hot isostatic pressing using the different atomized powders: (a) WA powders; (b) GA powders; (c) PREP powders

    图  5  粒状贝氏体组织透射电镜形貌:(a)明场像;(b)M–A岛选区电子衍射图

    Figure  5.  TEM images of the granular bainite structure: (a) bright field; (b) SAED pattern of M–A

    图  6  粒状贝氏体组织(a)及其C元素面分布图(b)

    Figure  6.  Granular bainite structure (a) and the corresponding C distribution (b)

    图  7  粉末烧结样品的反极图和相分布:(a)、(b)WA粉;(c)、(d)GA粉;(e)、(f)PREP粉

    Figure  7.  IPF and phase distribution of the sintered samples: (a), (b) WA powders, (c), (d) GA powders; (e), (f) PREP powders

    图  8  原始颗粒边界处夹杂物背散射图像:(a)WA粉;(b)GA粉;(c)PREP粉

    Figure  8.  BSE images of the inclusions in PPBs: (a) WA powders; (b) GA powders; (c) PREP powders

    图  9  原始颗粒边界处夹杂物的场发射电子探针图像:(a)WA粉;(b)GA粉;(c)PREP粉

    Figure  9.  EPMA images of the inclusions in PPBs: (a) WA powders; (b) GA powders; (c) PREP powders

    图  10  夹杂物形成过程示意图

    Figure  10.  Schematic diagram of the inclusions formation process

    图  11  粉末烧结样品拉伸性能

    Figure  11.  Tensile properties of the powder sintered samples

    图  12  烧结样品拉伸断口形貌:(a)、(d)WA粉;(b)、(e)GA粉;(c)、(f)PREP粉

    Figure  12.  Tensile fracture morphology of the sintered samples: (a), (d) WA powders, (b), (e) GA powders; (c), (f) PREP powders

    图  13  沿颗粒剥离失效机理图

    Figure  13.  Mechanism diagram of theinter-particles debonding

    表  1  雾化钢粉化学成分(质量分数)

    Table  1.   Chemical Composition of the three atomized steel powders %

    粉末COSiMnCrNiMoVFe
    WA粉0.250.4260.981.131.281.760.310.11余量
    GA粉0.250.0371.091.151.131.740.280.11余量
    PREP粉0.260.0180.941.121.231.750.280.11余量
    下载: 导出CSV

    表  2  3种雾化粉末的物理性质

    Table  2.   Physical properties of the atomized powders

    粉末类型流动性 / [s·(50 g)‒1]松装密度 / (g·cm‒3)振实密度 / (g·cm‒3)粒度分布 / μm
    D10D50D90
    WA粉末46.503.424.508.1530.2103.0
    GA粉末23.604.464.958.8134.799.2
    PERP粉末13.994.624.9546.9081.4148.0
    下载: 导出CSV
  • [1] Yuan S Q, Shen Z X, Zhou C H, et al. Microstructure and property of 30CrMnSiNi2A in different heat treatment. Mater Sci Technol, 2015, 23(2): 125 doi: 10.11951/j.issn.1005-0299.20150222

    袁书强, 沈正祥, 周春华, 等. 不同热处理条件下30CrMnSiNi2A钢的组织性能研究. 材料科学与工艺, 2015, 23(2): 125 doi: 10.11951/j.issn.1005-0299.20150222
    [2] Yao C G, Meng S, Li X L, et al. Effect of powder oxygen content on mechanical properties and microstructure of FGH4169 alloy. Mater Sci Eng Powder Metall, 2017, 22(1): 33 doi: 10.3969/j.issn.1673-0224.2017.01.006

    姚草根, 孟烁, 李秀林, 等. 粉末氧含量对热等静压FGH4169合金力学性能与组织的影响. 粉末冶金材料科学与工程, 2017, 22(1): 33 doi: 10.3969/j.issn.1673-0224.2017.01.006
    [3] Higashi M, Kanno N. Effect of initial powder particle size on the hot workability of powder metallurgy Ni-based superalloys. Mater Des, 2020, 194: 108926 doi: 10.1016/j.matdes.2020.108926
    [4] Sreenu B, Sarkar R, Kumar S S S, et al. Microstructure and mechanical behaviour of an advanced powder metallurgy nickel base superalloy processed through hot isostatic pressing route for aerospace applications. Mater Sci Eng A, 2020, 797: 140254 doi: 10.1016/j.msea.2020.140254
    [5] You D D, Wang Y H, Yang C, et al. Comparative analysis of the hot-isostatic-pressing densification behavior of atomized and milled Ti6Al4V powders. J Mater Res Technol, 2020, 9(3): 3091 doi: 10.1016/j.jmrt.2020.01.055
    [6] Guo R P, Xu L, Chen Z Y, et al. Effect of powder surface state on microstructure and tensile properties of a novel near α-Ti alloy using hot isostatic pressing. Mater Sci Eng A, 2017, 706: 57 doi: 10.1016/j.msea.2017.08.096
    [7] Shulga A V. Enhancing the ductility of ferritic/martensitic stainless steel through the use of PM HIP manufacturing techniques. Eng Fail Anal, 2015, 56: 512 doi: 10.1016/j.engfailanal.2014.11.019
    [8] Irukuvarghula S, Hassanin H, Cayron C, et al. Effect of powder characteristics and oxygen content on modifications to the microstructural topology during hot isostatic pressing of an austenitic steel. Acta Mater, 2019, 172: 6 doi: 10.1016/j.actamat.2019.03.038
    [9] Sergi A, Khan R H U, Attallah M M. The role of powder atomisation route on the microstructure and mechanical properties of hot isostatically pressed Inconel 625. Mater Sci Eng A, 2021, 808: 140950 doi: 10.1016/j.msea.2021.140950
    [10] Long A P, Li S L, Wang H, et al. Characterization of oxide on the water-atomized FeMn powder surface. Appl Surf Sci, 2014, 295: 180 doi: 10.1016/j.apsusc.2013.12.183
    [11] Gao Z J, Zhang G Q, Li Z, et al. Effect of size distribution and oxygen content of powder on microstructure of HIPed superalloy FGH96. Chin J Rare Met, 2012, 36(4): 665 doi: 10.3969/j.issn.0258-7076.2012.04.026

    高正江, 张国庆, 李周, 等. 粉末粒度和氧含量对HIP态FGH96合金组织的影响. 稀有金属, 2012, 36(4): 665 doi: 10.3969/j.issn.0258-7076.2012.04.026
    [12] Mostafaei A, Hilla C, Stevens E L, et al. Comparison of characterization methods for differently atomized nickel-based alloy 625 powders. Powder Technol, 2018, 333: 180 doi: 10.1016/j.powtec.2018.04.014
    [13] Guo R P, Xu L, Zong B Y P, et al. Characterization of prealloyed Ti–6Al–4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts. Acta Metall Sinica, 2017, 30(8): 735 doi: 10.1007/s40195-017-0540-4
    [14] Chen Y, Zhang J Y, Wang B, et al. Comparative study of IN600 superalloy produced by two powder metallurgy technologies: argon atomizing and plasma rotating electrode process. Vacuum, 2018, 156: 302 doi: 10.1016/j.vacuum.2018.07.050
    [15] Hou W Q, Meng J, Liang J J, et al. Preparation technology and research progress of superalloy powders used for additive manufacturing. Powder Metall Technol, 2022, 40(2): 131 doi: 10.19591/j.cnki.cn11-1974/tf.2021030038

    侯维强, 孟杰, 梁静静, 等. 增材制造用高温合金粉末制备技术及研究进展. 粉末冶金技术, 2022, 40(2): 131 doi: 10.19591/j.cnki.cn11-1974/tf.2021030038
    [16] Ohtani H, Okaguchi S, Fujishiro Y, et al. Morphology and properties of low-carbon bainite. Metall Trans A, 1990, 21(3): 877 doi: 10.1007/BF02656571
    [17] Shim D H, Lee T, Lee J, et al. Increased resistance to hydrogen embrittlement in high-strength steels composed of granular bainite. Mater Sci Eng A, 2017, 700: 473 doi: 10.1016/j.msea.2017.06.043
    [18] He G A, Ding H H, Liu C Z, et al. Effect of powder characteristics on microstructure and deformation activation energy of nickel based superalloy. Chin J Nonferrous Met, 2016, 26(1): 37 doi: 10.19476/j.ysxb.1004.0609.2016.01.006

    何国爱, 丁晗晖, 刘琛仄, 等. 粉末特性对镍基粉末冶金高温合金组织及热变形行为的影响. 中国有色金属学报, 2016, 26(1): 37 doi: 10.19476/j.ysxb.1004.0609.2016.01.006
    [19] Zumsande K, Weddeling A, Hryha E, et al. Characterization of the surface of Fe–19Mn–18Cr–C–N during heat treatment in a high vacuum—An XPS study. Mater Charact, 2012, 71: 66 doi: 10.1016/j.matchar.2012.06.002
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  64
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 刊出日期:  2022-10-30

目录

    /

    返回文章
    返回