粉末粒径和烧结温度对K418高温合金多孔材料显微结构及性能影响

张迈 梁加淼 刘墨瀚 李东 白肖承体 徐凯 王俊

张迈, 梁加淼, 刘墨瀚, 李东, 白肖承体, 徐凯, 王俊. 粉末粒径和烧结温度对K418高温合金多孔材料显微结构及性能影响[J]. 粉末冶金技术, 2023, 41(5): 442-448. doi: 10.19591/j.cnki.cn11-1974/tf.2022040002
引用本文: 张迈, 梁加淼, 刘墨瀚, 李东, 白肖承体, 徐凯, 王俊. 粉末粒径和烧结温度对K418高温合金多孔材料显微结构及性能影响[J]. 粉末冶金技术, 2023, 41(5): 442-448. doi: 10.19591/j.cnki.cn11-1974/tf.2022040002
ZHANG Mai, LIANG Jiamiao, LIU Mohan, LI Dong, BAIXIAO Chengti, XU Kai, WANG Jun. Effects of powder size and sintering temperature on microstructure and properties of porous K418 superalloys[J]. Powder Metallurgy Technology, 2023, 41(5): 442-448. doi: 10.19591/j.cnki.cn11-1974/tf.2022040002
Citation: ZHANG Mai, LIANG Jiamiao, LIU Mohan, LI Dong, BAIXIAO Chengti, XU Kai, WANG Jun. Effects of powder size and sintering temperature on microstructure and properties of porous K418 superalloys[J]. Powder Metallurgy Technology, 2023, 41(5): 442-448. doi: 10.19591/j.cnki.cn11-1974/tf.2022040002

粉末粒径和烧结温度对K418高温合金多孔材料显微结构及性能影响

doi: 10.19591/j.cnki.cn11-1974/tf.2022040002
基金项目: 国家自然科学基金资助项目(51971143)
详细信息
    通讯作者:

    E-mail: jmliang@sjtu.edu.cn

  • 中图分类号: TF123; TB383

Effects of powder size and sintering temperature on microstructure and properties of porous K418 superalloys

More Information
  • 摘要: 以气雾化K418镍基高温合金球形粉末为原料,经过粉末松装烧结制备出高温合金多孔材料。通过对多孔材料微观结构、渗透性能、毛细性能及压缩强度进行表征,研究了原始粉末粒径和烧结温度对多孔吸液芯样品显微结构及性能的影响。结果表明,随烧结温度增加,样品的平均孔径和孔隙率减小;在相同烧结温度下,随着原始粉末粒径增加,样品的平均孔径和孔隙率增大。在烧结温度为1230 ℃,粉末粒径为53~150 μm的条件下,多孔材料样品综合性能最优,渗透率为13.69×10−15 m2,毛细压力为22.1 kPa,压缩强度为86 MPa。
  • 图  1  K418高温合金粉末粒度分布:(a)细粉;(b)中粉;(c)粗粉

    Figure  1.  Particle size distribution of the K418 superalloys: (a) fine powders; (b) middle-sized powders; (c) coarse powders

    图  2  渗透率测量装置示意图(a)和毛细曲线测量装置示意图(b)

    Figure  2.  Schematics of the permeability measuring device (a) and the capillary curve measuring device (b)

    图  3  不同粒径金属粉末在不同烧结温度下制得的高温合金多孔材料显微形貌:(a)1200A;(b)1200B;(c)1200C;(d)1230A;(e)1230B;(f)1230C;(g)1250A;(h)1250B;(i)1250C

    Figure  3.  SEM images of the porous material samples in the different particle size at the different temperatures: (a) 1200A; (b) 1200B; (c) 1200C; (d) 1230A; (e) 1230B; (f) 1230C; (g) 1250A; (h) 1250B; (i) 1250C

    图  4  样品孔隙率随烧结温度变化曲线

    Figure  4.  Relationship between the porosity of the samples and the sintering temperature

    图  5  样品孔径随烧结温度变化曲线

    Figure  5.  Relationship between the average pore size and the sintering temperature

    图  6  实验样品毛细曲线

    Figure  6.  Capillary curve of porous material samples

    图  7  多孔材料样品压缩曲线

    Figure  7.  Compression curves of the porous material samples

    表  1  K418合金粉末主要化学成分(质量分数)

    Table  1.   Main chemical composition of the K418 alloy powders %

    Ni Cr Al Mo Nb Ti 其他
    73.10 12.93 5.96 4.26 2.10 0.28 <1
    下载: 导出CSV

    表  2  通过积分计算得到的K418高温合金粉末平均粒径

    Table  2.   Average particle size of the K418 superalloy powders calculated by integrating

    金属粉末 粒径分布范围 / μm 平均粒径,D50 / μm
    细粉(A) 0~15 14.5
    中粉(B) 15~53 31.7
    粗粉(C) 53~150 77.6
    下载: 导出CSV

    表  3  K418高温合金多孔材料样品制备参数及命名

    Table  3.   Preparation parameters and names of the porous material samples

    烧结温度 / ℃ 粉末粒径 / μm
    0~15 15~53 53~150
    1200 1200A 1200B 1200C
    1230 1230A 1230B 1230C
    1250 1250A 1250B 1250C
    下载: 导出CSV

    表  4  实验样品孔隙率

    Table  4.   Porosity of the porous material samples %

    1200A 1200B 1200C 1230A 1230B 1230C 1250A 1250B 1250C
    27.7 35.7 41.7 17.2 23.9 36.9 15.0 15.3 35.8
    下载: 导出CSV

    表  5  实验样品平均孔径

    Table  5.   Average pore size of the porous material samples μm

    1200A 1200B 1200C 1230A 1230B 1230C 1250A 1250B 1250C
    15.0 25.6 46.8 11.3 19.9 44.2 10.8 15.2 36.8
    下载: 导出CSV

    表  6  实验样品的渗透率

    Table  6.   Permeability of the porous material samples (×10−15 m2)

    1200A 1200B 1200C 1230A 1230B 1230C 1250A 1250B 1250C
    1.89 39.1 3.68 2.68
    下载: 导出CSV

    表  7  实验样品的毛细压力

    Table  7.   Capillary pressure of the porous material samples kPa

    1200A 1200B 1200C 1230A 1230B 1230C 1250A 1250B 1250C
    9.02 18.00 22.10 6.85
    下载: 导出CSV

    表  8  实验样品的室温压缩强度

    Table  8.   Compressive strength of the porous material samples at room temperature MPa

    1200C 1230C 1250C 1200B 1230B 1250B 1200A 1230A 1250A
    74 86 410 380 490 640 126 745
    下载: 导出CSV
  • [1] Andrews J. Heat Pipe Technology. New York: Pergamon Press, 1997
    [2] Guo B J, Li W J. Structural materials and thermal protection system of hypersonic vehicle. Process Mater, 2010(4): 88 doi: 10.16338/j.issn.1009-1319.2010.04.005

    郭朝邦, 李文杰. 高超声速飞行器结构材料与热防护系统. 飞航导弹, 2010(4): 88 doi: 10.16338/j.issn.1009-1319.2010.04.005
    [3] Peng W G. Theoretical and Simulation Study on Thermal Protection Mechanism of Metal Structural Heat Pipe for Hypersonic Vehicle [Dissertation]. Harbin: Harbin Institute of Technology, 2011

    彭稳根. 高超声速飞行器金属结构热管热防护机制理论与模拟研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2011
    [4] Yu P L, Yin F X. Heat pipes and metal porous materials in heat pipes technology. Powder Metall Technol, 2011, 29(5): 380 doi: 10.19591/j.cnki.cn11-1974/tf.2011.05.011

    余培良, 尹凤霞. 热管及热管技术中的金属多孔材料. 粉末冶金技术, 2011, 29(5): 380 doi: 10.19591/j.cnki.cn11-1974/tf.2011.05.011
    [5] Zhu M H, Bai P F, Hu Y X, et al. Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick. CIESC J, 2019, 70(4): 1349

    朱明汉, 白鹏飞, 胡艳鑫, 等. 烧结多孔槽道吸液芯超薄平板热管的传热性能. 化工学报, 2019, 70(4): 1349
    [6] Guan W L. Preparation of Iron-Based Porous Materials and Its Application in Water [Dissertation]. Qingdao: Qingdao University of Science and Technology, 2020

    关文岚. 铁基多孔材料的制备及其在水体中的应用研究[学位论文]. 青岛: 青岛科技大学, 2020
    [7] Ding C S, Soni G, Bozorgi P, et al. A flat heat pipe architecture based on nanostructured titania. J Microelectromech System, 2010, 19(4): 878 doi: 10.1109/JMEMS.2010.2051019
    [8] Jafari D, Wits W W, Geurts B J. Metal 3D-printed wick structures for heat pipe application: Capillary performance analysis. Appl Therm Eng, 2018, 143: 403 doi: 10.1016/j.applthermaleng.2018.07.111
    [9] Wang D Z, Wang X Y, Zhou P, et al. Effect of sintering process on properties of Ni porous capillary wicks for loop heat pipe. Mater Sci Eng Powder Metall, 2014, 19(5): 687

    王德志, 王小鹰, 周盼, 等. 烧结工艺对环路热管用Ni多孔吸液芯性能的影响. 粉末冶金材料科学与工程, 2014, 19(5): 687
    [10] Li Q, Gan X P, Li Z Y, et al. Fabrication and mechanical properties of porous Ni wicks. Mater Sci Eng Powder Metall, 2018, 23(4): 361 doi: 10.3969/j.issn.1673-0224.2018.04.004

    黎强, 甘雪萍, 李志友, 等. 多孔镍毛细芯的制备及其力学性能. 粉末冶金材料科学与工程, 2018, 23(4): 361 doi: 10.3969/j.issn.1673-0224.2018.04.004
    [11] Liu F X, Yuan W M, Tang X. Influences of structures on low cycle fatigue life of K418 alloy. J Aeron Mater, 1996, 16(2): 31

    刘发信, 袁文明, 汤鑫. K418合金的组织对低周疲劳性能的影响. 航空材料学报, 1996, 16(2): 31
    [12] Liu G Q. Experimental Study on Cutting Properties of K418 Nickel-Based Superalloy [Dissertation]. Nanjing: Nanjing University of Technology, 2006

    刘高群. 铸造镍基高温合金K418切削性能试验研究[学位论文]. 南京: 南京理工大学, 2006
    [13] Chi S V. Heat Pipe Theory and Practice: A Sourcebook. New York: Hemisphere Publishing Corp, 1976
    [14] Mishra D K, Saravanan T T, Khanra G P, et al. Studies on the processing of nickel base porous wicks for capillary pumped loop for thermal management of spacecrafts. Adv Powder Technol, 2010, 21(6): 658 doi: 10.1016/j.apt.2010.07.011
  • 加载中
图(7) / 表(8)
计量
  • 文章访问数:  846
  • HTML全文浏览量:  109
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 刊出日期:  2023-10-28

目录

    /

    返回文章
    返回