高熵合金研究进展

宋鑫芳 张勇

宋鑫芳, 张勇. 高熵合金研究进展[J]. 粉末冶金技术, 2022, 40(5): 451-457. doi: 10.19591/j.cnki.cn11-1974/tf.2022040003
引用本文: 宋鑫芳, 张勇. 高熵合金研究进展[J]. 粉末冶金技术, 2022, 40(5): 451-457. doi: 10.19591/j.cnki.cn11-1974/tf.2022040003
SONG Xin-fang, ZHANG Yong. Progress of high entropy alloys[J]. Powder Metallurgy Technology, 2022, 40(5): 451-457. doi: 10.19591/j.cnki.cn11-1974/tf.2022040003
Citation: SONG Xin-fang, ZHANG Yong. Progress of high entropy alloys[J]. Powder Metallurgy Technology, 2022, 40(5): 451-457. doi: 10.19591/j.cnki.cn11-1974/tf.2022040003

高熵合金研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2022040003
详细信息
    通讯作者:

    E-mail: drzhangy@ustb.edu.cn

  • 中图分类号: TG135

Progress of high entropy alloys

More Information
  • 摘要: 高熵合金突破了传统合金成分的限制,通过调配多种组元的排列组合和含量,赋予了高熵合金高强度、高韧性、高硬度、低温韧性、耐腐蚀和抗辐照等优异的力学性能和功能性能,在众多领域表现出了巨大的应用潜力。高熵合金目前主要有三个代表性的种类:以3d过渡族金属为主的Cantor合金(CoCrFeMnNi);以难熔金属为主的Senkov合金(NbMoTaW);以铝镁钛等轻质元素为主的低密度高熵合金(AlMgLiZnCu, AlMgZnCuSi, AlZrTiNbMo)。本文从高熵合金的概念出发,详细介绍了高熵合金的制备工艺,讨论了如何制备具有高强度‒高塑形、优秀磁性能‒力学性能以及高强度‒高导电性、轻质‒高强度等优异综合性能的高熵合金,并对高熵合金未来的发展趋势进行了展望。
  • 图  1  高熵合金粉末(a)和放电等离子烧结WC–HEA硬质合金(b)

    Figure  1.  High entropy alloy powders (a) and the WC–HEA cemented carbide by spark plasma sintering (b)

    图  2  Fe28.5Co47.5Ni19Al1.6Si3.4高熵合金和纯Al多孔骨架复合结构

    Figure  2.  Porous skeleton composite structure of the Fe28.5Co47.5Ni19Al1.6Si3.4 high entropy alloys and the pure Al

    图  3  (Zr0.5Ti0.35Nb0.15)100‒xAlx高熵合金室温拉伸和压缩性能[19]

    Figure  3.  Tensile and compressive properties of the (Zr0.5Ti0.35Nb0.15)100‒xAlx alloys at room temperature[19]

    图  4  (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5高熵软磁合金性能[23]:(a)磁性能;(b)室温拉伸性能

    Figure  4.  Properties of the (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 high entropy soft magnetic alloys[23]: (a) magnetic properties; (b) tensile properties at room temperature

    图  5  混合粉末物相(a)、微观形貌(b)和成分分析(c)及烧结Cu–10 %WTaNbMo合金拉伸性能(d)

    Figure  5.  Phase (a), morphology (b), and composition (c) analyses of the milled powers and the tensile properties of the sintered Cu–10 %WTaNbMo alloy (d)

  • [1] Tsai M H, Yeh J W. High-entropy alloys: a critical review. Mater Res Lett, 2014, 2(3): 107 doi: 10.1080/21663831.2014.912690
    [2] Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects. Mater Today, 2016, 19(6): 349 doi: 10.1016/j.mattod.2015.11.026
    [3] Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1 doi: 10.1016/j.pmatsci.2013.10.001
    [4] Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater, 2018, 61(1): 2 doi: 10.1007/s40843-017-9195-8
    [5] Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep, 2014, 4: 6200
    [6] Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater, 2017, 124: 143 doi: 10.1016/j.actamat.2016.11.016
    [7] Anand Sekhar R, Samal S, Nayan N, et al. Microstructure and mechanical properties of Ti–Al–Ni–Co–Fe based high entropy alloys prepared by powder metallurgy route. J Alloys Compd, 2019, 787: 123 doi: 10.1016/j.jallcom.2019.02.083
    [8] Pan J Y, Dai T, Lu T, et al. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater Sci Eng A, 2018, 738: 362 doi: 10.1016/j.msea.2018.09.089
    [9] Tang Z, Senkov O N, Parish C M, et al. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater Sci Eng A, 2015, 647: 229 doi: 10.1016/j.msea.2015.08.078
    [10] Chen S Y, Tong Y, Liaw P K. Additive manufacturing of high-entropy alloys: a review. Entropy (Basel), 2018, 20(12): 937 doi: 10.3390/e20120937
    [11] Luo S C, Zhao C Y, Su Y, et al. Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: formability, heterogeneous microstructures and deformation mechanisms. Addit Manuf, 2020, 31: 100925
    [12] Wang Y, Li R D, Niu P D, et al. Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting. Intermetallics, 2020, 120: 106746 doi: 10.1016/j.intermet.2020.106746
    [13] Dhanaraj P S, Rathinasuriyan C. Optimization of fiber laser welding parameters for high strength aluminium alloy AA7075-T6. Mater Today Proc, 2021, 52: 283
    [14] Zhang Q H, Li J G, Jiang K, et al. Gradient structure induced simultaneous enhancement of strength and ductility in AZ31 Mg alloy with twin-twin interactions. J Magnesium Alloys, 2021, 10: 014
    [15] Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016, 534(7606): 227 doi: 10.1038/nature17981
    [16] Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563(7732): 546 doi: 10.1038/s41586-018-0685-y
    [17] Pan Q S, Zhang L X, Feng R, et al. Gradient-cell-structured high-entropy alloy with exceptional strength and ductility. Science, 2021, 374(6570): 984 doi: 10.1126/science.abj8114
    [18] Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science, 2021, 373(6557): 912 doi: 10.1126/science.abf6986
    [19] Yan X H, Liaw P K, Zhang Y. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates. J Mater Sci Technol, 2022, 110: 109 doi: 10.1016/j.jmst.2021.08.034
    [20] Chaudhary V, Mantri S A, Ramanujan R V, et al. Additive manufacturing of magnetic materials. Prog Mater Sci, 2020, 114: 100688 doi: 10.1016/j.pmatsci.2020.100688
    [21] Zhang Y, Zuo T T, Cheng Y Q, et al. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci Rep, 2013, 3(1): 1
    [22] Zuo T T, Gao M C, Ouyang L Z, et al. Tailoring magnetic behavior of CoFeMnNix (x=Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater, 2017, 130: 10 doi: 10.1016/j.actamat.2017.03.013
    [23] Zhang Y, Zhang M, Li D Y, et al. Compositional design of soft magnetic high entropy alloys by minimizing magnetostriction coefficient in (Fe0.3Co0. 5Ni0. 2)100−x(Al1/3Si2/3)x system. Metals, 2019, 9(3): 382 doi: 10.3390/met9030382
    [24] Han L L, Rao Z Y, Souza Filho I R, et al. Ultrastrong and ductile soft magnetic high-entropy alloys via coherent ordered nanoprecipitates. Adv Mater, 2021, 33(37): 2102139 doi: 10.1002/adma.202102139
    [25] Kim H, Ahn J H, Han S Z, et al. Microstructural characterization of cold-drawn Cu–Ni–Si alloy having high strength and high conductivity. J Alloys Compd, 2020, 832: 155059 doi: 10.1016/j.jallcom.2020.155059
    [26] Sun C F, Guo Y C, Yang Z, et al. Microstructurally stable nanocomposite WTaMoNb/Cu prepared by mechanical alloying and hot pressing sintering. Mater Lett, 2022, 306: 130894 doi: 10.1016/j.matlet.2021.130894
    [27] Li Y S, Zhang Y. Light-weight and flexible high entropy alloys // High Entropy Alloys. London:IntechOpen Limited, 2019: 1
    [28] Li Y S, Liaw P K, Zhang Y. Microstructures and properties of the low-density Al15Zr40Ti28Nb12M(Cr, Mo, Si)5 high-entropy alloys. Metals, 2022, 12(3): 496 doi: 10.3390/met12030496
    [29] Li R X, Zheng R, Wu Y, et al. Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al–Zn–Li–Mg–Cu alloy. Mater Sci Eng:A, 2021, 802: 140637 doi: 10.1016/j.msea.2020.140637
    [30] Shao L, Zhang T, Li L, et al. A low-cost lightweight entropic alloy with high strength. J Mater Eng Perform, 2018, 27(12): 6648 doi: 10.1007/s11665-018-3720-0
  • 加载中
图(5)
计量
  • 文章访问数:  511
  • HTML全文浏览量:  3625
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-12
  • 刊出日期:  2022-10-30

目录

    /

    返回文章
    返回