液相反应烧结制备Al–Si合金半固态坯料

刘文超 邓澄 胡连喜 孙宇 高飞

刘文超, 邓澄, 胡连喜, 孙宇, 高飞. 液相反应烧结制备Al–Si合金半固态坯料[J]. 粉末冶金技术, 2022, 40(5): 465-470. doi: 10.19591/j.cnki.cn11-1974/tf.2022040011
引用本文: 刘文超, 邓澄, 胡连喜, 孙宇, 高飞. 液相反应烧结制备Al–Si合金半固态坯料[J]. 粉末冶金技术, 2022, 40(5): 465-470. doi: 10.19591/j.cnki.cn11-1974/tf.2022040011
LIU Wen-chao, DENG Cheng, HU Lian-xi, SUN Yu, GAO Fei. Preparation of Al–Si alloy semi-solid billets by liquid phase reaction sintering[J]. Powder Metallurgy Technology, 2022, 40(5): 465-470. doi: 10.19591/j.cnki.cn11-1974/tf.2022040011
Citation: LIU Wen-chao, DENG Cheng, HU Lian-xi, SUN Yu, GAO Fei. Preparation of Al–Si alloy semi-solid billets by liquid phase reaction sintering[J]. Powder Metallurgy Technology, 2022, 40(5): 465-470. doi: 10.19591/j.cnki.cn11-1974/tf.2022040011

液相反应烧结制备Al–Si合金半固态坯料

doi: 10.19591/j.cnki.cn11-1974/tf.2022040011
详细信息
    通讯作者:

    E-mail: dengcheng@scut.edu.cn (邓澄)

    hulx@hit.edu.cn (胡连喜)

    yusun@hit.edu.cn (孙宇)

  • 中图分类号: TF124

Preparation of Al–Si alloy semi-solid billets by liquid phase reaction sintering

More Information
  • 摘要: 通过Al、Si元素粉末的液相反应烧结制备了用于半固态成形的Al–6%Si(质量分数)合金坯料。研究结果表明,Al–6%Si混合粉末具有较好的冷压成形性能,经500 MPa冷压之后,其相对密度可达到97.6%。混合粉末的冷压压制特性可用黄培云压制方程进行描述。Al、Si元素粉末可以在585 ℃下发生反应生成液相,液相围绕等轴状的固相Al晶粒形成半固态组织。Al晶粒尺寸和液相含量随着反应时间的增加而增加。Al–6%Si元素粉末的反应烧结是一个液相持续存在的反应烧结系统,可以通过控制反应时间来控制半固态坯料的微观组织。
  • 图  1  原始粉末和冷压素坯微观组织:(a)Al粉;(b)Si粉;(c)Al–6%Si混合粉末;(d)500 MPa冷压后素坯

    Figure  1.  SEM images of the initial powders and the green compacts: (a) Al powders; (b) Si powders; (c) Al–6%Si mixed powders; (d) green compacts prepared by cold pressing at 500 MPa

    图  2  Al–6%Si混合粉相对密度与压制压力曲线(a)及黄培元压制方程拟合结果(b)

    Figure  2.  Relative density of the Al–6%Si mixed powders during cold pressing (a) and the fitting results of Huang Pei-yuan pressing equation (b)

    图  3  经585 ℃液相反应烧结不同时间后半固态坯料微观组织:(a)10 min;(b)20 min;(c)40 min;(d)80 min

    Figure  3.  Microstructure of the semi-solid billets sintered at different times: (a) 10 min; (b) 20 min; (c) 40 min; (d) 80 min

    图  4  初始粉末与半固态坯料的X射线衍射图谱

    Figure  4.  XRD patterns of the initial powders and the semi-solid billets

    图  5  经585 ℃/10 min液相反应烧结制备的坯料背散射图和元素面分布图

    Figure  5.  BSE image and the element distribution maps of the billets prepared by LPS at 585 ℃ for 10 min

    图  6  经不同时间液相反应烧结后坯料的液相含量

    Figure  6.  Liquid phase content of the semi-solid billets after the liquid phase reaction sintering at different times

  • [1] Jung J G, Ahn T Y, Cho Y H, et al. Synergistic effect of ultrasonic melt treatment and fast cooling on the refinement of primary Si in a hypereutectic Al–Si alloy. Acta Mater, 2018, 144: 31 doi: 10.1016/j.actamat.2017.10.039
    [2] Lasa L, Rodriguez-Ibabe J M. Effect of composition and processing route on the wear behaviour of Al–Si alloys. Scr Mater, 2002, 46(6): 477 doi: 10.1016/S1359-6462(02)00020-9
    [3] Li Y, Li J P, Liu L, et al. Evolution mechanism of cast Al–Si alloy surface roughness at high temperature. Chin J Nonferrous Met, 2021, 31(8): 2115 doi: 10.11817/j.ysxb.1004.0609.2021-39721

    李阳, 李建平, 刘磊, 等. 铸造Al–Si合金表面粗糙度的高温演变机制. 中国有色金属学报, 2021, 31(8): 2115 doi: 10.11817/j.ysxb.1004.0609.2021-39721
    [4] Zhao N, Ma H J, Hu Z L, et al. Microstructure and mechanical properties of Al–Mg–Si alloy during solution heat treatment and forging integrated forming process. Mater Charact, 2022, 185: 111762 doi: 10.1016/j.matchar.2022.111762
    [5] Flemings M C. Behavior of metal alloys in the semisolid state. Metall Trans B, 1991, 22B: 269
    [6] Zhao L P, Zhang Y Z, Li Y Y. Ti element analysis in heat treatment process of A356 aluminum alloys. Powder Metall Technol, 2020, 38(4): 306 doi: 10.19591/j.cnki.cn11-1974/tf.2019050004

    赵利平, 张彦陟, 李云义. A356铝合金热处理工艺中Ti元素分析. 粉末冶金技术, 2020, 38(4): 306 doi: 10.19591/j.cnki.cn11-1974/tf.2019050004
    [7] Zhao Z D, Chen Q, Wang Y B, et al. Microstructural evolution of an ECAE-formed ZK60-RE magnesium alloy in the semi-solid state. Mater Sci Eng A, 2009, 506: 8 doi: 10.1016/j.msea.2008.12.042
    [8] Takagi H, Uetani Y, Dohi M, et al. Effects of mechanical stirring and vibration on the microstructure of hypereutectic Al–Si–Cu–Mg alloy billets. Mater Trans, 2007, 48(5): 960 doi: 10.2320/matertrans.48.960
    [9] Liu D, Atkinson H V, Jones H. Thermodynamic prediction of thixoformability in alloys based on the Al–Si–Cu and Al–Si–Cu–Mg systems. Acta Mater, 2005, 53(14): 3807 doi: 10.1016/j.actamat.2005.04.028
    [10] Shabestari S G, Abdi M, Naghdali S. Effect of thixoforming and precipitation hardening on microstructure and mechanical properties of Al–10.5Si–3Cu–0. 2Mg alloy produced by strain induced melt activation process. J Mater Res Technol, 2021, 15: 4981
    [11] Bolouri A, Kang C G. Correlation between solid fraction and tensile properties of semisolid RAP processed aluminum alloys. J Alloys Compd, 2012, 516: 192 doi: 10.1016/j.jallcom.2011.12.045
    [12] Alhawari K S, Omar M Z, Ghazali M J, et al. Microstructural evolution during semisolid processing of Al–Si–Cu alloy with different Mg contents. Trans Nonferrous Met Soc China, 2017, 27(7): 1483 doi: 10.1016/S1003-6326(17)60169-9
    [13] German R M, Suri P, Park S J. Review: liquid phase sintering. J Mater Sci, 2009, 44: 1 doi: 10.1007/s10853-008-3008-0
    [14] Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004

    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004
    [15] Du Y, Schuster J C, Liu Z K, et al. A thermodynamic description of the Al–Fe–Si system over the whole composition and temperature ranges via a hybrid approach of CALPHAD and key experiments. Intermetallics, 2008, 16(4): 554 doi: 10.1016/j.intermet.2008.01.003
  • 加载中
图(6)
计量
  • 文章访问数:  2219
  • HTML全文浏览量:  61
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 刊出日期:  2022-10-28

目录

    /

    返回文章
    返回