微晶蜡基WC–10Co注射成形喂料的流变性能及溶剂脱脂行为

袁建坤 杨宇 陈鹏起 程继贵

袁建坤, 杨宇, 陈鹏起, 程继贵. 微晶蜡基WC–10Co注射成形喂料的流变性能及溶剂脱脂行为[J]. 粉末冶金技术, 2022, 40(5): 413-420. doi: 10.19591/j.cnki.cn11-1974/tf.2022050011
引用本文: 袁建坤, 杨宇, 陈鹏起, 程继贵. 微晶蜡基WC–10Co注射成形喂料的流变性能及溶剂脱脂行为[J]. 粉末冶金技术, 2022, 40(5): 413-420. doi: 10.19591/j.cnki.cn11-1974/tf.2022050011
YUAN Jian-kun, YANG Yu, CHEN Peng-qi, CHENG Ji-gui. Rheological property and solvent debinding behavior of microcrystalline wax based feedstocks for injection molding[J]. Powder Metallurgy Technology, 2022, 40(5): 413-420. doi: 10.19591/j.cnki.cn11-1974/tf.2022050011
Citation: YUAN Jian-kun, YANG Yu, CHEN Peng-qi, CHENG Ji-gui. Rheological property and solvent debinding behavior of microcrystalline wax based feedstocks for injection molding[J]. Powder Metallurgy Technology, 2022, 40(5): 413-420. doi: 10.19591/j.cnki.cn11-1974/tf.2022050011

微晶蜡基WC–10Co注射成形喂料的流变性能及溶剂脱脂行为

doi: 10.19591/j.cnki.cn11-1974/tf.2022050011
基金项目: 安徽省重点研究与开发计划资助项目(202104a05020046)
详细信息
    通讯作者:

    E-mail: jgcheng@hfut.edu.cn

  • 中图分类号: TF124.3

Rheological property and solvent debinding behavior of microcrystalline wax based feedstocks for injection molding

More Information
  • 摘要: 以微晶蜡为粘结剂主要组元,与WC–10Co(YG10)粉末密炼混合,得到注射成形喂料。通过线性拟合计算出喂料的非牛顿指数、粘流活化能和综合流变学因子,考察不同温度与剪切速率下喂料的流变性能。对成形坯体在不同温度下于不同脱脂溶剂中的失重进行分析,考察坯体的溶剂脱脂动力学行为。结果表明,微晶蜡基喂料呈现假塑性流体的剪切稀化特征,对剪切速率和温度的敏感性较为稳定,综合流变性能良好。可溶性粘结剂组元的脱除主要发生在脱脂前期,由扩散所控制,且随着坯体厚度和体积的减小及脱脂温度的升高,扩散系数增大。
  • 图  1  喂料在不同温度与剪切速率下的粘度

    Figure  1.  Viscosity of the feedstock at different temperatures and shear rates

    图  2  喂料在不同温度下logη与logγ的关系

    Figure  2.  Relationship between logη and logγ of the feedstock at different temperatures

    图  3  喂料logη与1/T的关系(剪切速率为400 s‒1

    Figure  3.  Relationship between logη and 1/T of the feedstocks with the shear rate of 400 s‒1

    图  4  溶剂脱脂过程示意图

    Figure  4.  Schematic diagram of the solvent debinding process

    图  5  不同温度下坯体在正庚烷中的脱脂率

    Figure  5.  Debinding rate of the green parts in n-heptane at different temperatures

    图  6  两种不同坯体的模型图

    Figure  6.  Model diagram of two different green parts

    图  7  坯体A不同脱脂条件下ln(‒lnF)与1/T的关系:(a)三氯乙烯;(b)正庚烷;(c)煤油

    Figure  7.  Relationship between ln(‒lnF) and 1/T under the different debinding conditions of green part A: (a) trichloroethylene; (b) n-heptane; (c) kerosene

    图  8  坯体B不同脱脂条件下ln(‒lnF)与1/T的关系:(a)三氯乙烯;(b)正庚烷;(c)煤油

    Figure  8.  Relationship between ln(‒lnF) and 1/T under the different debinding conditions of green part B: (a) trichloroethylene; (b) n-heptane; (c) kerosene

    图  9  正庚烷中不同脱脂时间下坯体表面和断面的显微形貌:(a)生坯表面;(b)1 h表面;(c)3 h表面;(d)5 h表面;(e)生坯断面;(f)1 h断面;(g)3 h断面;(h)5 h断面

    Figure  9.  Surface and section SEM images of the green parts in the different debinding times: (a) surface, 0 h; (b) surface, 1 h; (c) surface, 3 h; (d) surface, 5 h; (e) section, 0 h; (f) section, 1 h (g) section, 3 h; (h) section, 5 h

    表  1  不同溶剂与温度的动力学参数

    Table  1.   Kinetic parameters in the different solvents at the different temperatures

    溶剂30 ℃扩散系数 / (×10‒3 mm2·s‒1) 35 ℃扩散系数 / (×10‒3 mm2·s‒1) 40 ℃扩散系数 / (×10‒3 mm2·s‒1)
    ABABAB
    三氯乙烯3.819.70 4.2211.26 4.6613.01
    正庚烷2.459.273.0110.893.6812.74
    煤油1.736.961.987.782.268.66
    下载: 导出CSV
  • [1] Chen R Z, Zheng S, Zhou R, et al. Development of cemented carbides with CoxFeNiCrCu high-entropy alloyed binder prepared by spark plasma sintering. Int J Refract Met Hard Mater, 2022, 103: 105751 doi: 10.1016/j.ijrmhm.2021.105751
    [2] Sun Z Y, Qin M L, Li R, et al. Preparation of high performance soft magnetic alloy Fe–4Si–0.8P by metal injection molding. Adv Powder Technol, 2017, 28(10): 2687
    [3] Prathabrao M, Amin S Y M, Ibrahim M H I. Review on sintering process of WC–Co cemented carbide in metal injection molding technology // Colloquium of Advanced Materials. Johor, 2017: 143
    [4] Liu C, Kong X J, Wu S W, et al. Research on powder injection molding of Ti6Al4V alloys for biomedical application. Powder Metall Technol, 2018, 36(3): 7 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.010

    刘超, 孔祥吉, 吴胜文, 等. 生物医用Ti6Al4V合金粉末注射成形工艺研究. 粉末冶金技术, 2018, 36(3): 7 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.010
    [5] Lin D G, Sanetrnik D, Cho H, et al. Rheological and thermal debinding properties of blended elemental Ti–6Al–4V powder injection molding feedstock. Powder Technol, 2017, 311: 357 doi: 10.1016/j.powtec.2016.12.071
    [6] Gao C P, Luo T G, Liu S L, et al. Debinding and sintering properties of titanium alloys prepared by powder injection molding. Powder Metall Technol, 2021, 39(5): 410 doi: 10.19591/j.cnki.cn11-1974/tf.2021030018

    高春萍, 罗铁钢, 刘胜林, 等. 粉末注射成形钛合金的脱脂和烧结性能. 粉末冶金技术, 2021, 39(5): 410 doi: 10.19591/j.cnki.cn11-1974/tf.2021030018
    [7] Chang W G, Oh J W, Song G W, et al. Rheological and thermal debinding behaviors of silicon nitride in powder injection molding. Ceram Int, 2019, 45(14): 16982 doi: 10.1016/j.ceramint.2019.05.247
    [8] Hu K, Yang S S, Zou L M, et al. Effect of powder shape on rheological properties of tungsten feedstocks for metal powder injection molding. Rare Met Mater Eng, 2020, 49(10): 3472

    胡可, 杨世松, 邹黎明, 等. 粉末粒形对钨粉末注射成形喂料流变性能的影响. 稀有金属材料与工程, 2020, 49(10): 3472
    [9] Cui D W, Qu X H, Wei W Q, et al. Characteristics of high nitrogen stainless steel powder by milling and rheological properties of its MIM feedstock. Rare Met Mater Eng, 2015, 44(12): 3173

    崔大伟, 曲选辉, 魏文庆, 等. 球磨高氮不锈钢粉末特性及注射喂料流变性能. 稀有金属材料与工程, 2015, 44(12): 3173
    [10] Yang Z C, Li D X, Lu R W, et al. Effect of microcrystalline wax content on the rheology of 17-4PH stainless steel feedstock. Mater Sci Eng Powder Metall, 2013, 18(6): 926 doi: 10.3969/j.issn.1673-0224.2013.06.025

    杨忠臣, 李笃信, 卢仁伟, 等. 微晶蜡含量对17-4PH不锈钢喂料流变性的影响. 粉末冶金材料科学与工程, 2013, 18(6): 926 doi: 10.3969/j.issn.1673-0224.2013.06.025
    [11] Claudel D, Mohamed S, Thierry B, et al. Influence of particle-size distribution and temperature on the rheological properties of highly concentrated Inconel feedstock alloy 718. Powder Technol, 2017, 322: 273 doi: 10.1016/j.powtec.2017.08.049
    [12] Chen G, Cao P, Wen G A, et al. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding. Mater Chem Phys, 2013, 139(2-3): 557 doi: 10.1016/j.matchemphys.2013.01.057
    [13] You L, Liu Y J, Pan Y, et al. Research progress of titanium alloy binder system for powder injection molding. Powder Metall Technol, 2021, 39(6): 563 doi: 10.19591/j.cnki.cn11-1974/tf.2020090009

    尤力, 刘艳军, 潘宇, 等. 粉末注射成形钛合金粘结剂体系的研究进展. 粉末冶金技术, 2021, 39(6): 563 doi: 10.19591/j.cnki.cn11-1974/tf.2020090009
    [14] Zhao M M, Qiao L, Zheng J W, et al. Investigation of the solvent debinding in the injection molding of ZrO2 ceramics using LDEP, HDPE and wax binders. Ceram Int, 2019, 45(3): 3894 doi: 10.1016/j.ceramint.2018.11.062
    [15] Wahab N A, Ahmad I N, Omar M A, et al. Determination of optimised solvent debinding parameters of injection moulded 316L stainless steel using Taguchi approach. Mater Today Proc, 2019, 16: 2357 doi: 10.1016/j.matpr.2019.06.139
    [16] Luo M, Zhou F, Song X W. A powder injection molding debinding process for iron-based alloys. Powder Metall Ind, 2019, 29(5): 68 doi: 10.13228/j.boyuan.issn1006-6543.20180037

    罗蒙, 周芬, 宋希文. 一种铁基合金的粉末注射成形脱脂工艺研究. 粉末冶金工业, 2019, 29(5): 68 doi: 10.13228/j.boyuan.issn1006-6543.20180037
    [17] Askari A, Momeni V. Rheological investigation and injection optimization of Fe–2Ni–2Cu feedstock for metal injection molding process. Mater Chem Phys, 2021, 271: 124926 doi: 10.1016/j.matchemphys.2021.124926
    [18] Park J M, Han J S, Gal C W, et al. Effect of binder composition on rheological behavior of PMN-PZT ceramic feedstock. Powder Technol, 2018, 330: 19 doi: 10.1016/j.powtec.2018.02.027
    [19] Liu W S, Long L P, Ma Y Z, et al. Solvent debinding processing of 93W–Ni–Fe powder extrusion molding compacts. Chin J Nonferrous Met, 2012, 22(2): 441

    刘文胜, 龙路平, 马运柱, 等. 93W–Ni–Fe粉末挤压成形坯溶剂脱脂工艺. 中国有色金属学报, 2012, 22(2): 441
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  48
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 刊出日期:  2022-10-30

目录

    /

    返回文章
    返回