氩气雾化镍基粉末高温合金及粉末特性研究进展

张强 郑亮 许文勇 李周 张国庆 谢建新

张强, 郑亮, 许文勇, 李周, 张国庆, 谢建新. 氩气雾化镍基粉末高温合金及粉末特性研究进展[J]. 粉末冶金技术, 2022, 40(5): 387-400. doi: 10.19591/j.cnki.cn11-1974/tf.2022050016
引用本文: 张强, 郑亮, 许文勇, 李周, 张国庆, 谢建新. 氩气雾化镍基粉末高温合金及粉末特性研究进展[J]. 粉末冶金技术, 2022, 40(5): 387-400. doi: 10.19591/j.cnki.cn11-1974/tf.2022050016
ZHANG Qiang, ZHENG Liang, XU Wen-yong, LI Zhou, ZHANG Guo-qing, XIE Jian-xin. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics[J]. Powder Metallurgy Technology, 2022, 40(5): 387-400. doi: 10.19591/j.cnki.cn11-1974/tf.2022050016
Citation: ZHANG Qiang, ZHENG Liang, XU Wen-yong, LI Zhou, ZHANG Guo-qing, XIE Jian-xin. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics[J]. Powder Metallurgy Technology, 2022, 40(5): 387-400. doi: 10.19591/j.cnki.cn11-1974/tf.2022050016

氩气雾化镍基粉末高温合金及粉末特性研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2022050016
基金项目: 国家自然科学基金资助项目(52071310,52127802);重点实验室基金资助项目(6142903200303,6142903220302);国家科技重大专项资助项目(Y2019-VII-0010-0151)
详细信息
    通讯作者:

    E-mail: zhangqiang0_2019@163.com (张强)

    liang.zheng@biam.ac.cn (郑亮)

    g.zhang@126.com (张国庆)

  • 中图分类号: TF123; TG146.1+5

Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics

More Information
  • 摘要: 概述了国内外镍基粉末高温合金的发展、氩气雾化制粉技术的特点、氩气雾化镍基高温合金粉末的特性和增材制造用镍基高温合金粉末的发展方向,重点介绍了镍基高温合金粉末的形貌与粒度控制、氧化特性、气体脱附行为和缺陷形成及控制措施。讨论了镍基高温合金粉末特性与合金缺陷之间的内在关系,总结了缺陷消除措施的研究进展,明确了未来粉末涡轮盘用氩气雾化镍基高温合金粉末质量优化的发展方向,并对高品质氩气雾化镍基高温合金粉末促进增材制造技术在航空航天领域的应用进行了展望。
  • 图  1  镍基粉末高温合金发展历史[1]

    Figure  1.  Development of the nickel-based powder metallurgy superalloys[1]

    图  2  四代镍基粉末高温合金性能对比[10]

    Figure  2.  Comprehensive properties of the four generation nickel-based powder metallurgy superalloys[10]

    图  3  真空感应熔炼气雾化法制粉原理图[1]

    Figure  3.  Schematic of VIGA powder production[1]

    图  4  电极感应熔炼气雾化法制粉原理图[21]

    Figure  4.  Schematic of EIGA powder production[21]

    图  5  不同尺寸氩气雾化FGH96粉末的表面和内部凝固组织:(a)表面组织,104~147 μm;(b)表面组织,61~104 μm;(c)表面组织,38~61 μm;(d)表面组织,<38 μm;(e)内部组织,104~147 μm;(f)内部组织,61~104 μm;(g)内部组织,38~61 μm;(h)内部组织,<38 μm[23]

    Figure  5.  Surface and interior microstructures of the argon atomized FGH96 powders with the different particle sizes: (a) surface microstructures, 104~147 μm; (b) surface microstructures, 61~104 μm; (c) surface microstructures, 38~61 μm; (d) surface microstructures, <38 μm; (e) interior microstructures, 104~147 μm; (f) interior microstructures, 61~104 μm; (g) interior microstructures, 38~61 μm; (h) interior microstructures, <38 μm[23]

    图  6  存储条件对镍基粉末高温合金粉末表面状态及热变形行为的影响[29]

    Figure  6.  Influence of storage conditions on the powder surface state and hot deformation behavior of PM nickel-based superalloys[29]

    图  7  FGH96高温合金粉末表面氧化层分布[30]:(a)表面氧化层纳米束电子衍射图谱;(b)表面氧化层高角环形暗场扫描透射显微形貌;(c)Ni、O、Ti、Cr、Co和Al能谱分析

    Figure  7.  Surface oxide layer distribution of the FGH96 superalloy powders[30]: (a) nano-beam electron diffraction patterns of the surface layer regions; (b) high angle annular dark field-scanning transmission electron microscope image of the surface oxide layers; (c) the corresponding energy disperse spectroscope maps of Ni, O, Ti, Cr, Co, and Al

    图  8  合金成分和粒度对镍基高温合金粉末气体脱附行为的影响:(a)氢气脱附;(b)水蒸气脱附;(c)氧气脱附;(d)二氧化碳脱附;(e)一氧化碳脱附[30]

    Figure  8.  Effects of the composition and particle size on the degassing behavior of nickel-based superalloy powders: (a) H2 degassing; (b) H2O degassing; (c) O2 degassing; (d) CO2 degassing; (e) CO degassing[30]

    图  9  空心粉形成机理示意图[42]:(a)熔融液滴破碎;(b)单个气孔空心粉;(c)多个气孔空心粉;(d)开孔空心粉

    Figure  9.  Schematic of the hollow powder formation mechanism[42]: (a) droplet split; (b) single bubble; (c) multi bubble; (d) open hollow powder

    图  10  袋式破碎机制形成空心粉[45]:(a)~(e)空心粉形成过程;(f)空心粉微观形貌

    Figure  10.  Evolution of the hollow powders formed by bag breakup mechanism[45]: (a)~(e) hollow powder formation process; (f) hollow powder in optical microscope

    图  11  卫星粉的形成过程[45]:(a)液滴破碎;(b)卫星粉形成;(c)不同X点液滴速率;(d)卫星粉微观形貌

    Figure  11.  Evolution of satellite powders [45]: (a) droplet breakup; (b) satellite powder formation; (c) velocity of droplet in different X positions (Y=60 mm); (d) satellite powder in optical microscope

    图  12  热等静压态FGH96高温合金中原始颗粒边界缺陷的组成[48]:(a)原始颗粒边界缺陷;(b)原始颗粒边界缺陷各种析出相分布;(c)γ′相选区电子衍射斑;(d)MC型碳化物选区电子衍射斑;(e)ZrO2选区电子衍射斑;(f)Al2O3选区电子衍射斑

    Figure  12.  Composition of the PPBs defects in HIPed FGH96 superalloys[48]: (a) PPBs; (b) precipitation phase distribution in PPBs; (c) selected area electron diffraction (SAED) patterns of γ′ phase; (d) SAED patterns of MC-type carbides; (e) SAED patterns of ZrO2; (f) SAED patterns of Al2O3

    表  1  国外典型镍基粉末高温合金特性[89]

    Table  1.   Characteristics of the typical nickel-based powder metallurgy superalloys[89]

    代次合金牌号国家γ′相质量分数 / %γ′相完全溶解温度 / ℃密度 / (g·cm‒3)
    第一代René95美国5011608.26
    IN100美国6111857.90
    MERL76美国6411907.95
    APK-1美国4511458.02
    эп741нп俄罗斯6011808.35
    第二代René88DT美国4211308.36
    N18法国5511908.00
    U720Li美国3711508.10
    第三代LSHR美国6011608.29
    RR1000英国4611608.14
    Alloy10美国5511808.41
    NR3法国5312058.05
    René104/ME3美国5111608.30
    第四代ME501美国5511828.15
    V202KHN2
    (Alloy A)
    英国4911408.25
    V202KHN2+Nb
    (Alloy B)
    英国5011508.30
    下载: 导出CSV

    表  2  国内典型镍基粉末高温合金特性[1314]

    Table  2.   Characteristics of the typical domestic nickel-based powder metallurgy superalloys[1314]

    代次合金牌号γ′相含量 / %γ′相完全溶解温度 / ℃密度 / (g·cm‒3)
    第一代FGH955011608.28
    FGH976211858.30
    第二代FGH963611308.32
    第三代FGH985011608.26
    FGH100L5311708.25
    下载: 导出CSV
  • [1] Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application. Acta Metall Sin, 2019, 55(9): 1133 doi: 10.11900/0412.1961.2019.00119

    张国庆, 张义文, 郑亮, 等. 航空发动机用粉末高温合金及制备技术研究进展. 金属学报, 2019, 55(9): 1133 doi: 10.11900/0412.1961.2019.00119
    [2] Shi C X, Zhong Z Y. Development and innovation of superalloy in China. Acta Metall Sin, 2010, 46(11): 1281

    师昌绪, 仲增墉. 我国高温合金的发展与创新. 金属学报, 2010, 46(11): 1281
    [3] Reed R C. The Superalloys: Fundamentals and Applications. London: Cambridge University Press, 2008
    [4] Qu X H, Zhang G Q, Zhang L. Applications of powder metallurgy technologies in aero-engines. J Aeron Mater, 2014, 34(1): 1

    曲选辉, 张国庆, 章林. 粉末冶金技术在航空发动机中的应用. 航空材料学报, 2014, 34(1): 1
    [5] Zheng B L, Ashford D, Zhou Y Z, et al. Influence of mechanically milled powder and high pressure on spark plasma sintering of Mg–Cu–Gd metallic glasses. Acta Mater, 2013, 61(12): 4414 doi: 10.1016/j.actamat.2013.04.011
    [6] Dai D H, Gu D D. Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites. Int J Mach Tools Manuf, 2016, 100: 14 doi: 10.1016/j.ijmachtools.2015.10.004
    [7] Whitman C A, O’ flynn J T, Rayner A J, et al. Determining the oxidation behavior of metal powders during heating through thermogravimetric and evolved gas analysis using a coupled thermogravimetry-gas chromatography-mass spectrometry technique. Thermochimica Acta, 2016, 638: 124 doi: 10.1016/j.tca.2016.06.019
    [8] Zhang Y W, Liu J T, Jia J, et al. Recent development of fourth generation powder metallurgy superalloys in America and Europe. Powder Metall Ind, 2022, 32(1): 1 doi: 10.13228/j.boyuan.issn1006-6543.20210105

    张义文, 刘建涛, 贾建, 等. 欧美第四代粉末高温合金研究进展. 粉末冶金工业, 2022, 32(1): 1 doi: 10.13228/j.boyuan.issn1006-6543.20210105
    [9] Tian T. Microstructure and Properties of The New Third Generation Powder Metallurgy Superalloy Prepared by Spray Forming Processing [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

    田甜. 喷射成形制备新型第三代粉末高温合金的组织和性能[学位论文]. 北京: 北京科技大学, 2020
    [10] Huang B Y, Wei W F, Li S L, et al. Development of modern powder metallurgy materials and technology. Chin J Nonferrous Met, 2019, 29(9): 1917 doi: 10.19476/j.ysxb.1004.0609.2019.09.08

    黄伯云, 韦伟峰, 李松林, 等. 现代粉末冶金材料与技术进展. 中国有色金属学报, 2019, 29(9): 1917 doi: 10.19476/j.ysxb.1004.0609.2019.09.08
    [11] Zhang Y W, Chi Y, Liu J T. Recent development of new type powder metallurgy superalloys in Russia. Powder Metall Ind, 2015, 25(4): 1

    张义文, 迟悦, 刘建涛. 俄罗斯新型粉末高温合金研制进展. 粉末冶金工业, 2015, 25(4): 1
    [12] Zhang Y W, Jia J, Liu J T, et al. Recent development of new type powder metallurgy superalloys in Russia. Powder Metall Ind, 2020, 30(6): 102 doi: 10.13228/j.boyuan.issn1006-6543.20200193

    张义文, 贾建, 刘建涛, 等. 俄罗斯新型粉末高温合金研究最新进展. 粉末冶金工业, 2020, 30(6): 102 doi: 10.13228/j.boyuan.issn1006-6543.20200193
    [13] Zhang Y W, Liu J T. Development in powder metallurgy superalloy. Mater China, 2013, 32(1): 1 doi: 10.7502/j.issn.1674-3962.2013.01.01

    张义文, 刘建涛. 粉末高温合金研究进展. 中国材料进展, 2013, 32(1): 1 doi: 10.7502/j.issn.1674-3962.2013.01.01
    [14] Zhang M. Study on Microstructure and Properties of FGH98 Alloy for Advanced Aero Engine Turbine Disk [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    张明. 先进航空发动机涡轮盘用FGH98合金组织与性能研究[学位论文]. 北京: 北京科技大学, 2018
    [15] Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China. Acta Metall Sin, 2020, 56(10): 1313 doi: 10.11900/0412.1961.2020.00199

    宿彦京, 付华栋, 白洋, 等. 中国材料基因工程研究进展. 金属学报, 2020, 56(10): 1313 doi: 10.11900/0412.1961.2020.00199
    [16] Wei M W, Chen S Y, Sun M, et al. Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure. Powder Technol, 2020, 367: 724 doi: 10.1016/j.powtec.2020.04.030
    [17] Czisch C, Fritsching U. Flow-adapted design option for free-fall atomizers. Atomiz Sprays, 2008, 18(6): 511 doi: 10.1615/AtomizSpr.v18.i6.30
    [18] Li Z, Zhang G, Zhang Y, et al. Structures and properties of argon-gas atomized superalloy powders. J Chin J Nonferrous Met, 2005, 15(S2): 335

    李周, 张国庆, 张翼飞, 等. 氩气雾化高温合金粉末的制备及其组织与性能. 中国有色金属学报, 2005, 15(S2): 335
    [19] Zhang G Q, Liu N, Li Z. Research progress of atomization and forming technology of high performance metallic materials. J Aeron Mater, 2020, 40(3): 95 doi: 10.11868/j.issn.1005-5053.2020.000093

    张国庆, 刘娜, 李周. 高性能金属材料雾化与成形技术研究进展. 航空材料学报, 2020, 40(3): 95 doi: 10.11868/j.issn.1005-5053.2020.000093
    [20] Jia W M, Chen S Y, Wei M W, et al. Characteristics and printability of K417G nickel-base alloy powder prepared by VIGA method. Powder Metall, 2019, 62(1): 30 doi: 10.1080/00325899.2018.1546921
    [21] Yang L B, Ren X N, Xia M, et al. Study on powder characteristics and effect factors of droplets size during electrode induction melting gas atomization. Rare Met Mater Eng, 2020, 49(6): 2017

    杨乐彪, 任晓娜, 夏敏, 等. 电极感应熔化气雾化粉末特性及液滴尺寸影响因素的研究. 稀有金属材料与工程, 2020, 49(6): 2017
    [22] Huang C S, Liu Z Q, Wu Y B, et al. Properties and characterization of Ti-6Al-4V alloy fine powders prepared by electrode induction melting gas atomization (EIGA) technique. Rare Met Mater Engg, 2019, 48(10): 3302

    黄传收, 柳中强, 吴苑标, 等. 电极感应熔炼气雾化制备Ti-6Al-4V合金粉末的性能及其表征. 稀有金属材料与工程, 2019, 48(10): 3302
    [23] Gao Z J, Zhang G Q, Li Z, et al. Microstructure characteristics of superalloy powders during rapid solidification prepared by argon atomization. Powder Metall Technol, 2011, 29(2): 93 doi: 10.19591/j.cnki.cn11-1974/tf.2011.02.003

    高正江, 张国庆, 李周, 等. 氩气雾化高温合金粉末的凝固组织特征. 粉末冶金技术, 2011, 29(2): 93 doi: 10.19591/j.cnki.cn11-1974/tf.2011.02.003
    [24] Yuan H, Li Z, Xu W Y, et al. The study of argon atomized superalloy powders. Powder Metall Ind, 2010, 20(4): 1 doi: 10.3969/j.issn.1006-6543.2010.04.001

    袁华, 李周, 许文勇, 等. 氩气雾化制备高温合金粉末的研究. 粉末冶金工业, 2010, 20(4): 1 doi: 10.3969/j.issn.1006-6543.2010.04.001
    [25] Zeoli N, Gu S. Computational validation of an isentropic plug nozzle design for gas atomisation. Comput Mater Sci, 2008, 42(2): 245 doi: 10.1016/j.commatsci.2007.07.013
    [26] Liu Y, Li Z, Zhang G Q, et al. Flow field of double layer atomizer. J Aeron Mater, 2015, 35(5): 63 doi: 10.11868/j.issn.1005-5053.2015.5.010

    刘杨, 李周, 张国庆, 等. 双层雾化器流场的模拟研究. 航空材料学报, 2015, 35(5): 63 doi: 10.11868/j.issn.1005-5053.2015.5.010
    [27] Liu Y, Zhang G Q, Li Z, et al. Application of non-contact measurement techniques in gas atomization powder preparation research. Mater China, 2020, 39(3): 206 doi: 10.7502/j.issn.1674-3962.201908016

    刘杨, 张国庆, 李周, 等. 非接触式测试技术在气雾化制粉研究中的应用. 中国材料进展, 2020, 39(3): 206 doi: 10.7502/j.issn.1674-3962.201908016
    [28] Sun J F, Cao F Y, Cui C S, et al. Dynamic behaviors of gas velocity field during metal atomization. Powder Metall Technol, 2002, 20(2): 79 doi: 10.3321/j.issn:1001-3784.2002.02.004

    孙剑飞, 曹福洋, 崔成松, 等. 金属雾化过程中气体流场动力学行为. 粉末冶金技术, 2002, 20(2): 79 doi: 10.3321/j.issn:1001-3784.2002.02.004
    [29] Zhang Q, Zheng L, Yuan H, et al. Influence of storage conditions on powder surface state and hot deformation behavior of a powder metallurgy nickel-based superalloy. Adv Eng Mater, 2022, 24(8): 2101615 doi: 10.1002/adem.202101615
    [30] Zhang Q, Zheng L, Yuan H, et al. Effects of composition and particle size on the surface state and degassing behavior of nickel-based superalloy powders. Appl Surf Sci, 2021, 556: 149793 doi: 10.1016/j.apsusc.2021.149793
    [31] Rao G A, Srinivas M, Sarma D S. Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718. Mater Sci Eng:A, 2006, 435-436: 84 doi: 10.1016/j.msea.2006.07.053
    [32] Guo Y L, Jia L N, Kong B, et al. Microstructure and surface oxides of rapidly solidified Nb-Si based alloy powders. Mater Des, 2017, 120: 109 doi: 10.1016/j.matdes.2017.02.014
    [33] Chasoglou D, Hryha E, Norell M, et al. Characterization of surface oxides on water-atomized steel powder by XPS/AES depth profiling and nano-scale lateral surface analysis. Appl Surface Sci, 2013, 268: 496 doi: 10.1016/j.apsusc.2012.12.155
    [34] Hryha E, Gierl C, Nyborg L, et al. Surface composition of the steel powders pre-alloyed with manganese. Appl Surface Sci, 2010, 256(12): 3946 doi: 10.1016/j.apsusc.2010.01.055
    [35] Bai Q, Lin J, Tian G, et al. Review and analysis of powder prior boundary (PPB) formation in powder metallurgy processes for nickel-based super alloys. J Powder Metall Min, 2015, 4: 127
    [36] Appa Rao G, Prasad K S, Kumar M, et al. Characterisation of hot isostatically pressed nickel base superalloy Inconel* 718. Mater Sci Technol, 2003, 19(3): 313 doi: 10.1179/026708303225010605
    [37] Estrada J L, Duszczyk J, Korevaar B M. Gas entrapment and evolution in prealloyed aluminium powders. J Mater Sci, 1991, 26(6): 1431 doi: 10.1007/BF00544650
    [38] Iwamoto K, Yamasaki M, Kawamura Y. Vacuum degassing behavior of rapidly solidified Al–Mn–Zr alloy powders. Mater Sci Eng:A, 2007, 449-451: 1013 doi: 10.1016/j.msea.2006.02.252
    [39] Yamasaki M, Iwamoto K, Tamagawa H, et al. Vacuum degassing behavior of Zr-, Ni- and Cu-based metallic glass powders. Mater Sci Eng:A, 2007, 449-451: 907 doi: 10.1016/j.msea.2006.02.340
    [40] Yamasaki M, Kawamura Y. Changes in the surface characteristics of gas-atomized pure aluminum powder during vacuum degassing. Mater Trans, 2006, 47(8): 1902 doi: 10.2320/matertrans.47.1902
    [41] Yamasaki M, Kawamura Y. Effect of vacuum degassing on surface characteristics of rapidly solidified Al-based alloy powders. Mater Trans, 2004, 45(4): 1335 doi: 10.2320/matertrans.45.1335
    [42] Liu Y F, Liu N, Zheng L, et al. Effect of HIP temperatures and powder particle size on microstructure and properties of PM TiAl alloy. Rare Met Mater Eng, 2019, 48(10): 3227

    刘玉峰, 刘娜, 郑亮, 等. HIP温度和粉末粒度对PM TiAl合金组织和性能的影响. 稀有金属材料与工程, 2019, 48(10): 3227
    [43] Rabin B H, Smolik G R, Korth G E. Characterization of entrapped gases in rapidly solidified powders. Mater Sci Eng:A, 1990, 124(1): 1 doi: 10.1016/0921-5093(90)90328-Z
    [44] Hou W Q, Meng J, Liang J J, et al. Preparation technology and research progress of superalloy powders used for additive manufacturing. Powder Metall Technol, 2022, 40(2): 131 doi: 10.19591/j.cnki.cn11-1974/tf.2021030038

    侯维强, 孟杰, 梁静静, 等. 增材制造用高温合金粉末制备技术及研究进展. 粉末冶金技术, 2022, 40(2): 131 doi: 10.19591/j.cnki.cn11-1974/tf.2021030038
    [45] Luo S, Wang H Z, Gao Z Y, et al. Interaction between high-velocity gas and liquid in gas atomization revealed by a new coupled simulation model. Mater Des, 2021, 212: 110264 doi: 10.1016/j.matdes.2021.110264
    [46] Guo W M, Wu J T, Chen G S, et al. The influence of vacuum degassing pretreatment on microstructure and properties of superalloy FGH95. J Aeron Mater, 2003, 23(Suppl 1): 21

    国为民, 吴剑涛, 陈淦生, 等. 真空脱气预处理工艺与FGH95合金热诱导孔洞的改善和性能提高的研究. 航空材料学报, 2003, 23(增刊1): 21
    [47] Guan S W, Liu S C, Shi J, et al. Research progress and prospect of metal powder preparation by gas atomization. Foundry, 2022, 71(2): 136 doi: 10.3969/j.issn.1001-4977.2022.02.002

    关书文, 刘世昌, 时坚, 等. 气雾化制备金属粉末的研究进展及展望. 铸造, 2022, 71(2): 136 doi: 10.3969/j.issn.1001-4977.2022.02.002
    [48] Tan L M, Li Y P, Liu C Z, et al. The evolution history of superalloy powders during hot consolidation and plastic deformation. Mater Charact, 2018, 140: 30 doi: 10.1016/j.matchar.2018.03.039
    [49] Riener K, Oswald S, Winkler M, et al. Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by laser powder bed fusion (LPBF). Addit Manuf, 2021, 39: 101896
    [50] Appa Rao G, Srinivas M, Sarma D S. Effect of thermomechanical working on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718. Mater Sci Eng:A, 2004, 383(2): 201 doi: 10.1016/j.msea.2004.05.062
    [51] Appa Rao G, Srinivas M, Sarma D S. Effect of solution treatment temperature on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel* 718. Mater Sci Technol, 2004, 20(9): 1161 doi: 10.1179/026708304225022124
    [52] Chang L T, Sun W R, Cui Y Y, et al. Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact. Mater Sci Eng:A, 2014, 599: 186 doi: 10.1016/j.msea.2014.01.095
    [53] Qiu C L, Attallah M M, Wu X H, et al. Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder. Mater Sci Eng:A, 2013, 564: 176 doi: 10.1016/j.msea.2012.11.084
    [54] Zhang Y B, Zheng L, Xu W Y, et al. Interfacial reaction between mullite-based inclusions and PM superalloy FGH96. J Aeron Mater, 2022, 42(2): 20 doi: 10.11868/j.issn.1005-5053.2021.000159

    张轶波, 郑亮, 许文勇, 等. 莫来石基耐火材料夹杂物与粉末冶金高温合金FGH96界面反应. 航空材料学报, 2022, 42(2): 20 doi: 10.11868/j.issn.1005-5053.2021.000159
    [55] Zheng L, Zhang G Q, Gorley M J, et al. Effects of vacuum on gas content, oxide inclusions and mechanical properties of Ni-based superalloy using electron beam button and synchrotron diffraction. Mater Des, 2021, 207: 109861 doi: 10.1016/j.matdes.2021.109861
    [56] Huron E S, Roth P G. The influence of inclusions on low cycle fatigue life in a P/M nickel-base disk superalloy // Superalloys 1996. Champion, PA: TMS, 1996: 359
    [57] Li S X, Weng Y Q, Hui W J, et al. Very High Cycle Fatigue Properties of High Strength Steels: Effeccts of Nonmetallic Inclusions. Beijing: Metallurgical Industry Press, 2010

    李守新, 翁宇庆, 惠卫军, 等. 高强度钢超高周疲劳性能: 非金属夹杂物的影响. 北京: 冶金工业出版社, 2010
    [58] Zhang Y B, Zheng L, Xu W Y, et al. Effects of heat treatment temperature on microstructure and particle shedding of corundum-based refractory materials. J Mater Eng, 2022, 50(6): 138

    张轶波, 郑亮, 许文勇, 等. 热处理温度对刚玉基耐火材料组织和微粒脱落的影响. 材料工程, 2022, 50(6): 138
    [59] Hou J. Influences of Microstructure Characteristics and Microscale Particles on Fatigue Crack Propagation for P/M Superalloy FGH96 [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    侯杰. 组织特征和微米级颗粒对粉末高温合金FGH4096疲劳裂纹扩展的影响[学位论文]. 北京: 北京科技大学, 2018
    [60] Kennedy S K, Dalley A M, Kotyk G J. Additive manufacturing: Assessing metal powder quality through characterizing feedstock and contaminants. J Mater Eng Perform, 2019, 28(2): 728 doi: 10.1007/s11665-018-3841-5
    [61] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater, 2016, 117: 371 doi: 10.1016/j.actamat.2016.07.019
    [62] Han S B, Zhang Y W, Tian X J, et al. Research and application of high quality 3D printing metal powders for aerospace use. Powder Metall Ind, 2017, 27(6): 44 doi: 10.13228/j.boyuan.issn1006-6543.20170100

    韩寿波, 张义文, 田象军, 等. 航空航天用高品质3D打印金属粉末的研究与应用. 粉末冶金工业, 2017, 27(6): 44 doi: 10.13228/j.boyuan.issn1006-6543.20170100
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  4545
  • HTML全文浏览量:  287
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-27
  • 刊出日期:  2022-10-30

目录

    /

    返回文章
    返回