纳米碳化聚合物的制备、性质及应用

易健宏 赵文敏 何衍 鲍瑞

易健宏, 赵文敏, 何衍, 鲍瑞. 纳米碳化聚合物的制备、性质及应用[J]. 粉末冶金技术, 2022, 40(5): 401-412. doi: 10.19591/j.cnki.cn11-1974/tf.2022060002
引用本文: 易健宏, 赵文敏, 何衍, 鲍瑞. 纳米碳化聚合物的制备、性质及应用[J]. 粉末冶金技术, 2022, 40(5): 401-412. doi: 10.19591/j.cnki.cn11-1974/tf.2022060002
YI Jian-hong, ZHAO Wen-min, HE Yan, BAO Rui. Preparation, properties, and application of nano-carbonized polymers[J]. Powder Metallurgy Technology, 2022, 40(5): 401-412. doi: 10.19591/j.cnki.cn11-1974/tf.2022060002
Citation: YI Jian-hong, ZHAO Wen-min, HE Yan, BAO Rui. Preparation, properties, and application of nano-carbonized polymers[J]. Powder Metallurgy Technology, 2022, 40(5): 401-412. doi: 10.19591/j.cnki.cn11-1974/tf.2022060002

纳米碳化聚合物的制备、性质及应用

doi: 10.19591/j.cnki.cn11-1974/tf.2022060002
基金项目: 国家自然科学基金资助项目(52064032,52174345);云南省科技厅重大科技专项(202002AB080001)
详细信息
    通讯作者:

    E-mail: wenmzhao@163.com (赵文敏)

    baorui@kmust.edu.cn (鲍瑞)

  • 中图分类号: TB333

Preparation, properties, and application of nano-carbonized polymers

More Information
  • 摘要: 纳米碳化聚合物作为一种新型的碳纳米材料引起了人们广泛的关注。纳米碳化聚合物具有独特的核壳结构(sp2/sp3组成碳核,聚合物链、官能团构成壳),学者们通过调控反应条件以获得预期的纳米碳化聚合物结构,并将其广泛应用于生物成像、传感器、催化、发光二极管、铜基复合材料等领域。本文分析讨论了纳米碳化聚合物的结构、合成方法、形成机理、主要性质及应用,介绍了该同素异构体在材料、尤其是粉末冶金材料中的最新研究成果,最后对纳米碳化聚合物未来的发展进行展望。
  • 图  1  水热法制备纳米碳化聚合物[8]

    Figure  1.  Preparation of NCP by hydrothermal method[8]

    图  2  纳米碳化聚合物的反应过程[2]

    Figure  2.  Reaction process of NCP[2]

    图  3  水热反应合成纳米碳化聚合物流程(a)、纳米碳化聚合物在紫外灯下的荧光照片(b)和纳米碳化聚合物室温磷光寿命(c)[16]

    Figure  3.  Schematic diagram of NCP preparation by hydrothermal (a), photographs of NCP powders taken under the UV lamp (365 nm) (b), and time-resolved room temperature phosphorescence spectra of NCP (c)[16]

    图  4  不同反应时间合成纳米碳化聚合物流程及产物的形态[17]

    Figure  4.  Different morphology of the NCP products obtained by different reaction times[17]

    图  5  纳米碳化聚合物中交联增强效应表征[2]

    Figure  5.  CEE effect on the nano-carbonized polymers[2]

    图  6  纳米碳化聚合物在铜复合材料中的应用:(a)复合材料制备过程;(b)复合材料力学性能;(c)复合材料微观结构;(d)复合材料选区高分辨透射电子显微镜(transmission electron microscope,TEM)图[42]

    Figure  6.  Application of the nano-carbonized polymers in the Cu-based composites: (a) preparation of composites; (b) mechanical properties of composites; (c) micro-structure of composites; (d) TEM image of CPD/Cu composites[42]

    图  7  纳米碳化聚合物在协同增强铜复合材料中的应用:(a)复合材料制备过程;(b)复合材料力学性能;(c)复合材料机理示意图;(d)和(e)NCP-CNT/Cu复合材料微观结构[67]

    Figure  7.  Application of the nano-carbonized polymers in the synergistically reinforced copper composites: (a) preparation of composites; (b) mechanical properties of composites; (c) schematic diagram of the NCP and CNT in the Cu matrix; (d) and (e) microstructures of the NCP-CNT/Cu composites[67]

    表  1  反应物、制备方法及掺杂对纳米碳化聚合物产物的影响

    Table  1.   Effect of reactants, preparation methods, and doping on the NCP products

    主要原料掺杂元素制备方法荧光颜色产物尺寸 / nm荧光量子产率 / %参考文献
    柠檬酸+乙二胺N水热蓝色4.080.0[19]
    柠檬酸+尿素N微波辅助绿色3.014.0[20]
    柠檬酸+尿素N溶剂热橙色7.046.0[21]
    尿素+对苯二胺N水热蓝/绿/黄/红2.635.0[22]
    多巴胺+邻苯二胺N水热7.826.0[23]
    柠檬酸+甲酰胺N溶剂热蓝/绿/红6.516.0[24]
    蔗糖+正磷酸P微波辅助绿6.5[25]
    三溴化磷+对苯二酚P溶剂热10.025.0[26]
    间苯二胺、乙二胺和正磷酸P水热蓝/绿8.151.0[6]
    聚噻吩苯丙酸S水热10.02.3[27]
    柠檬酸钠+硫代硫酸钠S水热4.667.0[28]
    2,2'-(乙二硫)二乙酸S自组装蓝/绿3.36.5[29]
    三溴化硼+氢醌B溶剂热15.014.8[30]
    硼酸+蔗糖B水热5.02.2[31]
    下载: 导出CSV
  • [1] Zeng Q S, Feng T L, Tao S Y, et al. Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light Sci Appl, 2021, 10: 142 doi: 10.1038/s41377-021-00579-6
    [2] Tao S Y, Feng T L, Zheng C Y, et al. Carbonized polymer dots: a brand new perspective to recognize luminescent carbon-based nanomaterials. J Phys Chem Lett, 2019, 10(17): 5182 doi: 10.1021/acs.jpclett.9b01384
    [3] Chu K, Wang F, Li Y B, et al. Interface structure and strengthening behavior of graphene/CuCr composites. Carbon, 2018, 133: 127 doi: 10.1016/j.carbon.2018.03.018
    [4] Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc, 2004, 126: 12736 doi: 10.1021/ja040082h
    [5] Xia C L, Zhu S J, Feng T L, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv Sci, 2019, 6: 1901316 doi: 10.1002/advs.201901316
    [6] Sun X C, Brükner C, Lei Y. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission. Nanoscale, 2015, 7: 17278 doi: 10.1039/C5NR05549K
    [7] Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater, 2010, 22: 734 doi: 10.1002/adma.200902825
    [8] Meng W X, Wang B Y, Ai L, et al. Engineering white light-emitting diodes with high color rendering index from biomass carbonized polymer dots. J Colloid Interface Sci, 2021, 598: 274 doi: 10.1016/j.jcis.2021.04.022
    [9] Wang H B, Zhang M L, Wei K Q, et al. Pyrrolic nitrogen dominated the carbon dot mimic oxidase activity. Carbon, 2021, 179: 692 doi: 10.1016/j.carbon.2021.04.061
    [10] Tang X D, Yu H M, Bui B, et al. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact Mater, 2021, 6: 1541 doi: 10.1016/j.bioactmat.2020.11.006
    [11] Niu X Q, Song T B, Xiong H M. Large scale synthesis of red emissive carbon dots powder by solid state reaction for fingerprint identification. Chin Chem Lett, 2021, 32: 1953 doi: 10.1016/j.cclet.2021.01.006
    [12] Wang Q, Wang H X, Liu D, et al. Synthesis of flake-shaped nitrogen-doped carbon quantum dot/polyaniline (N-CQD/PANI) nanocomposites via rapid-mixing polymerization and their application as electrode materials in supercapacitors. Synth Met, 2017, 231: 120 doi: 10.1016/j.synthmet.2017.06.018
    [13] Liu Y, Xiao N, Gong N Q, et al. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon, 2014, 68: 258 doi: 10.1016/j.carbon.2013.10.086
    [14] Wang B Y, Song H Q, Tang Z Y, et al. Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation. Nano Res, 2022, 15: 942 doi: 10.1007/s12274-021-3579-5
    [15] Song Y B, Zhu S J, Zhang S T, et al. Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J Mater Chem C, 2015, 3: 5976 doi: 10.1039/C5TC00813A
    [16] Shen J, Xu B, Wang Z F, et al. Aggregation-induced room temperature phosphorescent carbonized polymer dots with wide-range tunable lifetimes for optical multiplexing. J Mater Chem C, 2021, 9: 6781 doi: 10.1039/D1TC01057C
    [17] Liu B, Chen Z, Chu B, et al. Clustering-induced white light emission from carbonized polymer dots. Adv Photonics Res, 2021, 2: 2000161 doi: 10.1002/adpr.202000161
    [18] Liu J J, Li D W, Zhang K, et al. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging. Small, 2018, 14(15): 1703919 doi: 10.1002/smll.201703919
    [19] Zhu S J, Meng Q N, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed, 2013, 52: 3953 doi: 10.1002/anie.201300519
    [20] Qu S N, Wang X Y, Lu Q P, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed, 2012, 51: 12215 doi: 10.1002/anie.201206791
    [21] Qu S N, Zhou D, Li D, et al. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv Mater, 2016, 28: 3516 doi: 10.1002/adma.201504891
    [22] Ding H, Yu S B, Wei J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 2016, 10: 484 doi: 10.1021/acsnano.5b05406
    [23] Lu S Y, Sui L Z, Liu J J, et al. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv Mater, 2017, 29: 1603443 doi: 10.1002/adma.201603443
    [24] Pan L L, Sun S, Zhang A D, et al. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater, 2015, 27: 7782 doi: 10.1002/adma.201503821
    [25] Chandra S, Das P, Bag S, et al. Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale, 2011, 3: 1533 doi: 10.1039/c0nr00735h
    [26] Zhou J, Shan X Y, Ma J J, et al. Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Adv, 2014, 4: 5465 doi: 10.1039/c3ra45294h
    [27] Ge J C, Jia Q Y, Liu W M, et al. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater, 2015, 27: 4169 doi: 10.1002/adma.201500323
    [28] Strauss V, Wang H Z, Delacroix S, et al. Carbon nanodots revised: the thermal citric acid/urea reaction. Chem Sci, 2020, 11: 8256 doi: 10.1039/D0SC01605E
    [29] Do S G, Kwon W S, Kim Y H, et al. N, S-induced electronic states of carbon nanodots toward white electroluminescence. Adv Opt Mater, 2016, 4: 276 doi: 10.1002/adom.201500488
    [30] Shan X Y, Chai L J, Ma J J, et al. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst, 2014, 139: 2322 doi: 10.1039/C3AN02222F
    [31] Hari Krishna S, Karuna Kar N. Boron-doped carbon nanoparticles: size-independent color tunability from red to blue and bioimaging applications. Carbon, 2016, 96: 166 doi: 10.1016/j.carbon.2015.08.096
    [32] Essner J B, Laber C H, Ravula S, et al. Pee-dots: biocompatible fluorescent carbon dots derived from the upcycling of urine. Green Chem, 2016, 18: 243 doi: 10.1039/C5GC02032H
    [33] Consoli G M L, Giuffrida M L, Satriano C, et al. A novel facile one-pot synthesis of photothermally responsive carbon polymer dots as promising drug nanocarriers. Chem Commun, 2022, 58: 3126 doi: 10.1039/D1CC06530K
    [34] Zhu S J, Song Y B, Shao J R, et al. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew Chem Int Ed, 2015, 54: 14626 doi: 10.1002/anie.201504951
    [35] Tao S Y, Zhu S J, Feng T L, et al. Crosslink-enhanced emission effect on luminescence in polymers: advances and perspectives. Angew Chem Int Ed, 2020, 59: 9910
    [36] Vallan L, Urriolabeitia E P, Ruipérez F, et al. Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots. J Am Chem Soc, 2018, 140: 12862 doi: 10.1021/jacs.8b06051
    [37] Tao S Y, Lu S Y, Geng Y J, et al. Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew Chem Int Ed, 2018, 57: 2393 doi: 10.1002/anie.201712662
    [38] Xia C L, Zhu S J, Zhang S T, et al. Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength. ACS Appl Mater Interfaces, 2020, 12: 38593 doi: 10.1021/acsami.0c11867
    [39] Liu J J, Geng Y J, Li D W, et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Adv Mater, 2020, 32(17): 1906641 doi: 10.1002/adma.201906641
    [40] Wang B Y, Lu S Y. The light of carbon dots: from mechanism to applications. Matter, 2022, 5: 110 doi: 10.1016/j.matt.2021.10.016
    [41] Ai L, Yang Y S, Wang B Y, et al. Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Sci Bull, 2021, 66: 839 doi: 10.1016/j.scib.2020.12.015
    [42] Zhao W M, Bao R, Yi J H, et al. Achieving a better mechanical enhancing effect of carbonized polymer dots than carbon nanotubes and graphene in copper matrix. Compos Commun, 2021, 28: 100906 doi: 10.1016/j.coco.2021.100906
    [43] Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc, 2006, 128: 7756 doi: 10.1021/ja062677d
    [44] Zhao W M, Bao R, Yi J H, et al. Fabrication of CNT/Cu based composite with twice in-situ formation from powder preparation to sintering. Mater Res Express, 2019, 6: 95088 doi: 10.1088/2053-1591/ab319d
    [45] Li M X, Chen T, Gooding J J, et al. Review of carbon and graphene quantum dots for sensing. ACS Sens, 2019, 4: 1732 doi: 10.1021/acssensors.9b00514
    [46] Chen X, Bai J L, Ma Y S, et al. Multifunctional sensing applications of biocompatible N-doped carbon dots as pH and Fe3+ sensors. Microchem J, 2019, 149: 103981 doi: 10.1016/j.microc.2019.103981
    [47] Xiao M, Liu Z G, Xu N X, et al. A smartphone-based sensing system for on-site quantitation of multiple heavy metal ions using fluorescent carbon nanodots-based microarrays. ACS Sens, 2020, 5: 870 doi: 10.1021/acssensors.0c00219
    [48] Li G, Wang F, Liu P, et al. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts. Chemosphere, 2018, 197: 526 doi: 10.1016/j.chemosphere.2018.01.071
    [49] Han M, Lu S Y, Qi F, et al. Carbon dots-implanted graphitic carbon nitride nanosheets for photocatalysis: simultaneously manipulating carrier transport in inter- and intralayers. Sol RRL, 2020, 4(4): 2070041 doi: 10.1002/solr.202070041
    [50] Lu Q, Zhang Y J, Liu S Q. Graphene quantum dots enhanced photocatalytic activity of zinc porphyrin toward the degradation of methylene blue under visible-light irradiation. J Mater Chem A, 2015, 3: 8552 doi: 10.1039/C5TA00525F
    [51] Hao Y C, Dong X L, Wang X Y, et al. Controllable electrostatic self-assembly of sub-3-nm graphene quantum dots incorporated into mesoporous Bi2MoO6 frameworks: efficient physical and chemical simultaneous co-catalysis for photocatalytic oxidation. J Mater Chem A, 2016, 4: 8298 doi: 10.1039/C6TA02371A
    [52] Yan M, Hua Y Q, Zhu F F, et al. Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 p-n junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics. Appl Catal B, 2017, 202: 518 doi: 10.1016/j.apcatb.2016.09.039
    [53] Wang S, Li L P, Zhu Z H, et al. Remarkable improvement in photocatalytic performance for tannery wastewater processing via SnS2 modified with N-doped carbon quantum dots: synthesis, characterization, and 4-nitrophenol-aided Cr (VI) photoreduction. Small, 2019, 15: 1804515 doi: 10.1002/smll.201804515
    [54] Cui Y P, Wang T, Liu J Y, et al. Enhanced solar photocatalytic degradation of nitric oxide using graphene quantum dots/bismuth tungstate composite catalysts. Chem Eng J, 2021, 420: 129595 doi: 10.1016/j.cej.2021.129595
    [55] Feng T L, Tao S Y, Yue D, et al. Recent advances in energy conversion applications of carbon dots: from optoelectronic devices to electrocatalysis. Small, 2020, 16: 2001295 doi: 10.1002/smll.202001295
    [56] Chen Z P, Mou K W, Wang X H, et al. Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew Chem Int Ed, 2018, 130: 12790
    [57] Lü K L, Suo W Q, Shao M D, et al. Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst for electroreduction CO2 to CO with high Faradaic efficiency. Nano Energy, 2019, 63: 103834 doi: 10.1016/j.nanoen.2019.06.030
    [58] Guo S J, Zhao S Q, Wu X Q, et al. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas. Nat Commun, 2017, 8: 1828 doi: 10.1038/s41467-017-01893-7
    [59] Li W D, Liu Y, Wu M, et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv Mater, 2018, 30: 1800676 doi: 10.1002/adma.201800676
    [60] Hoang V C, Dinh K N, Gomes V G, et al. Iodine doped composite with biomass carbon dots and reduced graphene oxide: a versatile bifunctional electrode for energy storage and oxygen reduction reaction. J Mater Chem A, 2019, 7: 22650 doi: 10.1039/C9TA05559B
    [61] Schubert E F, Kim J K. Solid-state light sources getting smart. Science, 2005, 308: 1274 doi: 10.1126/science.1108712
    [62] Dang P P, Liu D J, Li G G, et al. Recent advances in bismuth ion-doped phosphor materials: structure design, tunable photoluminescence properties, and application in white LEDs. Adv Opt Mater, 2020, 8: 1901993 doi: 10.1002/adom.201901993
    [63] Miao X, Qu D, Yang D X, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv Mater, 2018, 30: 1704740 doi: 10.1002/adma.201704740
    [64] Ji C Y, Han Q R, Zhou Y Q, et al. Phenylenediamine-derived near infrared carbon dots: The kilogram-scale preparation, formation process, photoluminescence tuning mechanism and application as red phosphors. Carbon, 2022, 192: 198 doi: 10.1016/j.carbon.2022.02.054
    [65] Zhao W M, Bao R, Yi J H, et al. Influence of carbonized polymer dot (CPD) structure on mechanical and electrical properties of copper matrix composite. Mater Charact, 2021, 181: 111463 doi: 10.1016/j.matchar.2021.111463
    [66] Huang X, Bao R, Yi J H. Improving effect of carbonized quantum dots (CQDs) in pure copper matrix composites. J Cent South Univ, 2021, 28: 1255 doi: 10.1007/s11771-021-4693-y
    [67] Luo H C, Bao R, Ma R F, et al. Preparation and properties of copper matrix composites synergistically strengthened by Al2O3 and CPD. Diamond Relat Mater, 2020, 124: 108916
    [68] Zhang L Q, Bao R, Yi J H, et al. Improving the interfacial bonding of CNT/Cu composites using CPD bridges. Mater Sci Eng A, 2022, 845: 143222 doi: 10.1016/j.msea.2022.143222
    [69] Zhao J X, Liu C, Li Y C, et al. Preparation of carbon quantum dots based high photostability luminescent membranes. Luminescence, 2017, 32: 625 doi: 10.1002/bio.3230
    [70] Zhang C, Du L, Liu C, et al. Photostable epoxy polymerized carbon quantum dots luminescent thin films and the performance study. Results Phys, 2016, 6: 767 doi: 10.1016/j.rinp.2016.10.013
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1930
  • HTML全文浏览量:  222
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 刊出日期:  2022-10-30

目录

    /

    返回文章
    返回