热等静压制备粉末高温合金原始颗粒边界研究现状

黄西娜 郭斯蕊 岳文 翟月雯 王成彪

黄西娜, 郭斯蕊, 岳文, 翟月雯, 王成彪. 热等静压制备粉末高温合金原始颗粒边界研究现状[J]. 粉末冶金技术, 2023, 41(5): 402-409, 419. doi: 10.19591/j.cnki.cn11-1974/tf.2022060005
引用本文: 黄西娜, 郭斯蕊, 岳文, 翟月雯, 王成彪. 热等静压制备粉末高温合金原始颗粒边界研究现状[J]. 粉末冶金技术, 2023, 41(5): 402-409, 419. doi: 10.19591/j.cnki.cn11-1974/tf.2022060005
HUANG Xina, GUO Sirui, YUE Wen, ZHAI Yuewen, WANG Chengbiao. Research status of prior particle boundaries for powder superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2023, 41(5): 402-409, 419. doi: 10.19591/j.cnki.cn11-1974/tf.2022060005
Citation: HUANG Xina, GUO Sirui, YUE Wen, ZHAI Yuewen, WANG Chengbiao. Research status of prior particle boundaries for powder superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2023, 41(5): 402-409, 419. doi: 10.19591/j.cnki.cn11-1974/tf.2022060005

热等静压制备粉末高温合金原始颗粒边界研究现状

doi: 10.19591/j.cnki.cn11-1974/tf.2022060005
基金项目: 国家自然科学基金青年科学基金资助项目(42102345);中央高校基本科研业务费专项资金资助项目(2022XJJD01)
详细信息
    通讯作者:

    E-mail: huangxina@126.com

  • 中图分类号: TF125

Research status of prior particle boundaries for powder superalloy prepared by hot isostatic pressing

More Information
  • 摘要: 粉末高温合金作为先进高温材料被广泛应用于航空航天领域。热等静压(hot isostatic pressing,HIP)是粉末高温合金构件的制备方法之一,但是原始颗粒边界(prior particle boundaries,PPBs)的存在会极大的影响构件的性能。本文综述了热等静压制备粉末高温合金原始颗粒边界的研究现状,概述了原始颗粒边界的形成机理及其影响,总结了粉末高温合金中原始颗粒边界的消除方法,并对这些方法应用的可行性及有效性进行了分析和展望。原始颗粒边界的消除方法主要包括向粉末添加Hf、Nb等强碳化物形成元素,对粉末进行预热处理,真空动态脱气处理或等离子体滴凝处理;优化粉末制备工艺,选用纯度更高、尺寸分布更均匀的粉末;选用合适的热等静压工艺参数和工艺方式;对制件采取热挤压、退火、固溶处理和热等静压后处理等。
  • 图  1  PPBs形成机理示意图[12]

    Figure  1.  Schematic diagram of the PPBs formation mechanism[12]

    图  2  PPBs评级标准[19]:(a)1级;(b)2级;(c)3级;(d)4级

    Figure  2.  PPBs rating standards[19]: (a) level 1; (b) level 2; (c) level 3; (d) level 4

    图  3  添加不同Ta质量分数的FGH4098粉末颗粒表面和内部碳化物显微形貌[21]:(a)0% Ta,粉末颗粒表面;(b)0% Ta,粉末内部碳化物;(c)2.4% Ta,粉末颗粒表面;(d)2.4% Ta,粉末内部碳化物

    Figure  3.  SEM images of the particle surfaces and internal carbides in FGH4098 powders with different Ta mass fraction[21]: (a) particle surface without Ta; (b) internal carbides without Ta; (c) particle surface with 2.4% Ta; (d) internal carbides with 2.4% Ta

    图  4  添加不同质量分数Ta的FGH4098粉末能谱分析[21]:(a)0%;(b)2.4%

    Figure  4.  Energy spectrum analysis of the FGH4098 powders with different Ta mass fraction[21]: (a) 0%; (b) 2.4%

    图  5  等离子体滴凝技术原理示意图[24]

    Figure  5.  Schematic diagram of the PDR principle[24]

    图  6  热挤压前后合金微观组织[43]:(a)热挤压前,低倍;(b)热挤压前,高倍;(c)热挤压后,横向低倍;(d)热挤压后,横向高倍;(e)热挤压后,纵向低倍;(f)热挤压后,纵向高倍

    Figure  6.  Microstructures of the alloys before and after hot extrusion[43]: (a) before hot extrusion, low magnification; (b) before hot extrusion, high magnification; (c) after hot extrusion, transverse low magnification; (d) after hot extrusion, transverse high magnification; (e) after hot extrusion, vertical high magnification (f) after hot extrusion, vertical high magnification

    图  7  热等静压后处理前后粉末微观组织[47]:(a)热等静压后处理前显微形貌;(b)热等静压后处理后显微形貌;(c)热等静压后处理前光学显微形貌;(d)热等静压后处理后光学显微形貌

    Figure  7.  Powder microstructures before and after HIPPT[47]: (a) SEM image before HIPPT; (b) SEM image after HIPPT; (c) OM image before HIPPT; (d) OM image after HIPPT

  • [1] Zhang Y W, Liu J T. Development in powder metallurgy superalloy. Progr Chin Mater, 2013, 32(1): 1

    张义文, 刘建涛. 粉末高温合金研究进展. 中国材料进展, 2013, 32(1): 1
    [2] Xu L, Guo R P, Wu J, et al. Progress in hot isostatic pressing technology of titanium alloy powder. Acta Metall Sin, 2018, 54(11): 1537

    徐磊, 郭瑞鹏, 吴杰, 等. 钛合金粉末热等静压近净成形研究进展. 金属学报(中文版), 2018, 54(11): 1537
    [3] Ji C H, Lang L H, Huang X N, et al. Research on powder-solid interface and coupling deformation of Ti6Al4V alloy powder during high temperature and high pressure. J Central South Univ(Sci Technol), 2019, 50(1): 29

    季晨昊, 郎利辉, 黄西娜, 等. Ti6Al4V合金粉末高温高压成形过程中粉固界面及其耦合变形研究. 中南大学学报(自然科学版), 2019, 50(1): 29
    [4] Yang J L, Zhu X M, Tan J J, et al. Microstructure and properties of argon atomization FGH97 P/M superalloy. Rare Met Mater Eng, 2019, 48(12): 4093

    杨金龙, 朱晓闽, 谭建均, 等. 氩气雾化制粉FGH97高温合金的组织和性能. 稀有金属材料与工程, 2019, 48(12): 4093
    [5] Zhou J Y, Liu C K, Zhao W X, et al. Prior particle boundary of PM FGH96 superalloy and its in-situ high-cycle fatigue at elevated temperature. J Aeron Mater, 2017, 37(5): 83 doi: 10.11868/j.issn.1005-5053.2016.000130

    周静怡, 刘昌奎, 赵文侠, 等. 粉末高温合金FGH96原始颗粒边界及高温原位高周疲劳研究. 航空材料学报, 2017, 37(5): 83 doi: 10.11868/j.issn.1005-5053.2016.000130
    [6] Crompton J S, Hertzberg R W. Analysis of second phase particles in a powder metallurgy HIP nickel-base superalloy. J Mater Sci, 1986, 21(10): 3445 doi: 10.1007/BF02402986
    [7] Liu L Y, Tao C H, Liu C K, et al. Fracture causes of powder metallurgy high pressure turbine disk of an engine. Mater Mechan Eng, 2014, 38(8): 108

    刘丽玉, 陶春虎, 刘昌奎, 等. 发动机粉末合金高压涡轮盘断裂的原因. 机械工程材料, 2014, 38(8): 108
    [8] Zhao J P, Tao Y, Yuan S Q, et al. The problem of prior particle boundary precipitation in P/M superalloys. Powder Metall Ind, 2010, 20(4): 43

    赵军普, 陶宇, 袁守谦, 等. 粉末冶金高温合金中的原始颗粒边界(PPB)问题. 粉末冶金工业, 2010, 20(4): 43
    [9] Mao J, Yu K L, Zhou R F. Effect of pre-heat treatment on P/M Rene’95 superalloy microstructure. Powder Metall Technol, 1989, 7(4): 213

    毛健, 俞克兰, 周瑞发. 粉末预热处理对热等静压Rene’95粉末高温合金组织的影响. 粉末冶金技术, 1989, 7(4): 213
    [10] Ma W B, Liu G Q, Hu B F, et al. Formation of previous particle boundary of nickel base PM superalloy FGH96. Acta Metall Sin, 2013, 49(10): 1248 doi: 10.3724/SP.J.1037.2013.00125

    马文斌, 刘国权, 胡本芙, 等. 镍基粉末高温合金FGH96中原始粉末颗粒边界的形成机理. 金属学报, 2013, 49(10): 1248 doi: 10.3724/SP.J.1037.2013.00125
    [11] Qiu C L, Yang D L, Wang G Q, et al. Microstructural development and tensile behavior of a hot isostatically pressed nickel-based superalloy. Mater Sci Eng, 2020, 769: 138461 doi: 10.1016/j.msea.2019.138461
    [12] Bai Q, Lin J, Tian G, et al. Review and analysis of powder prior boundary (PPB) formation in powder metallurgy processes for nickel-based super alloys. J Powder Metall Min, 2015, 4(2): 1
    [13] Zhao J P. Study on Prior Particle Boundary (PPB) Precipitation in P/M Superalloy FGH96 [Dissertation]. Xi’an: Xi’an University of Architecture and Technology, 2010

    赵军普. FGH96粉末高温合金原始颗粒边界(PPB)问题的研究[学位论文]. 西安: 西安建筑科技大学, 2010
    [14] Sreenu B, Sarkar R, Kumar S S, et al. Microstructure and mechanical behaviour of an advanced powder metallurgy nickel base superalloy processed through hot isostatic pressing route for aerospace applications. Mater Sci Eng:A, 2020, 797: 1
    [15] Chang L T, Jin H. A mechanistic study for the fracture mode and ductility variation in a powder metallurgy superalloy hot-isostatic-pressed at sub- and super-solvus temperatures. Mater Sci Eng:A, 2019, 743: 733 doi: 10.1016/j.msea.2018.11.144
    [16] Zhang M D, Liu J T, Zhang Y W, et al. Discussion on mechanism of eliminating prior particle boundary in powder metallurgy superalloy. Powder Metall Ind, 2021, 31(2): 41

    张梦迪, 刘建涛, 张义文, 等. 消除粉末高温合金中原始颗粒边界机制. 粉末冶金工业, 2021, 31(2): 41
    [17] Zhang Y, Zhang Y W, Sun Z K, et al. Influence of PPB on fatigue crack growth rate of PM Ni-based superalloy. Rare Metal Mater Eng, 2019, 48(10): 3282

    张莹, 张义文, 孙志坤, 等. PPB对镍基粉末高温合金裂纹扩展行为的影响. 稀有金属材料与工程, 2019, 48(10): 3282
    [18] Gessinger G H. Powder Metallurgy of Superalloys. 1st Ed. Zhang Y W transl. Beijing: Metallurgical Industry Press, 2017

    格辛格. 粉末高温合金. 1版. 张义文译. 北京: 冶金工业出版社, 2017
    [19] Ingesten N G, Warren R, Winberg L. The Nature and Origin of Previous Particle Boundary Precipitates in P/M Superalloys. Berlin: Springer Netherlands press, 1982
    [20] Yang F B, Jing Y H, Li D, et al. Influence of hot isostatic pressing and the subsequent heat treatment on microstructure and properties of MIM418 turbine alloy. Trans Mater Heat Treat, 2015, 36(Suppl 1): 128

    杨福宝, 景艳红, 李丹, 等. 热等静压及后续热处理对MIM418涡轮合金组织与性能的影响. 材料热处理学报, 2015, 36(增刊1): 128
    [21] Zhang M D, Liu J T, Zhang Y W, et al. Relationship between prior particle boundary of powder metallurgy superalloy and solubility of MC carbides. Trans Mater Heat Treat, 2021, 42(5): 50

    张梦迪, 刘建涛, 张义文, 等. 粉末高温合金原始颗粒边界与MC型碳化物溶解度的关系. 材料热处理学报, 2021, 42(5): 50
    [22] Liu Y F, Li Z, Liu N, et al. Effect of oxygen content of powders on previous particle boundaries in hot isostatic pressed TiAl alloy // High Performance Structural Materials. Singapore, 2018: 779
    [23] Wang M Y, Ji Z, Zhang Y F, et al. Research progress on the prior particle boundary of a powder metallurgy superalloy. Powder Metall Technol, 2017, 35(2): 142

    王梦雅, 纪箴, 张一帆, 等. 粉末高温合金中原始粉末颗粒边界研究进展. 粉末冶金技术, 2017, 35(2): 142
    [24] Kuo Y L, Kakehi K. Effect of the prior particle boundary on the microstructure and mechanical properties of hot-isostatic-pressed IN718 alloy. Mater Trans, 2017, 58(7): 1042 doi: 10.2320/matertrans.M2017045
    [25] Zhao L, Zhang X H, Deng T Q, et al. Develop an effective oxygen removal method for copper powder. Adv Powder Technol, 2018, 29(8): 1904 doi: 10.1016/j.apt.2018.05.001
    [26] Han Z Y, Zeng G, Liang S J, et al. Development in powder production technology of Ni-based superalloy. Mater China, 2014, 33(12): 748

    韩志宇, 曾光, 梁书锦, 等. 镍基高温合金粉末制备技术的发展现状. 中国材料进展, 2014, 33(12): 748
    [27] Hou W Q, Meng J, Liang J J, et al. Preparation technology and research progress of superalloy powders used for additive manufacturing. Powder Metall Technol, 2022, 40(2): 131

    侯维强, 孟杰, 梁静静, 等. 增材制造用高温合金粉末制备技术及研究进展. 粉末冶金技术, 2022, 40(2): 131
    [28] He G A, Ding H H, Liu C Z, et al. Effects of powder characteristics on microstructure and deformation activation energy of nickel based superalloy. Chin J Nonferrous Met, 2016, 26(1): 37

    何国爱, 丁晗晖, 刘琛仄, 等. 粉末特性对镍基粉末冶金高温合金组织及热变形行为的影响. 中国有色金属学报, 2016, 26(1): 37
    [29] Tan J J, Yang J L, Long A P, et al. Microstructure and low cycle fatigue property of FGH97 alloy with different atomization methods. Chin J Rare Met, 2019, 43(1): 52

    谭建均, 杨金龙, 龙安平, 等. 制粉方式对FGH97合金组织和低周疲劳性能的影响. 稀有金属, 2019, 43(1): 52
    [30] Sergi A, Khan R H U, Attallah M M. The role of powder atomisation route on the microstructure and mechanical properties of hot isostatically pressed Inconel 625. Mater Sci Eng:A, 2021, 808: 140950 doi: 10.1016/j.msea.2021.140950
    [31] Irukuvarghula S, Hassanin H, Cayron C, et al. Evolution of grain boundary network topology in 316L austenitic stainless steel during powder hot isostatic pressing. Acta Mater, 2017, 133(17): 269
    [32] Irukuvarghula S, Hassanin H, Cayron C, et al. Effect of powder characteristics and oxygen content on modifications to the microstructural topology during hot isostatic pressing of an austenitic steel. Acta Mater, 2019, 172: 6 doi: 10.1016/j.actamat.2019.03.038
    [33] Zhang Jiaqing. Study on Formation Mechanism and Evolution Law of FGH96 Alloy Original Powder Particle Boundary [Dissertation]. Taiyuan: North University of China, 2017

    张佳庆. FGH96合金原始粉末颗粒边界形成机理及演化规律研究[学位论文]. 太原: 中北大学, 2017
    [34] Tan L M, He G A, Liu F, et al. Effects of temperature and pressure of hot isostatic pressing on the grain structure of powder metallurgy superalloy. Materials, 2018, 11(2): 328 doi: 10.3390/ma11020328
    [35] Xie J, Tian S G, Zhou X M, et al. Effect of microstructure of FGH95 nickel-based alloy on durability properties. J Central South Univ(Sci Technol), 2012, 43(7): 2547

    谢君, 田素贵, 周晓明, 等. FGH95镍基合金组织结构对持久性能的影响. 中南大学学报(自然科学版), 2012, 43(7): 2547
    [36] Teng Q, Wei Q S, Xue P J, et al. Effects of processing temperatures on FGH4097 superalloy fabricated by hot isostatic pressing: Microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng, 2019, 739: 118 doi: 10.1016/j.msea.2018.08.030
    [37] Huang J, Xue P J, Cai C, et al. Mechanical properties of Ti6Al4V alloy prepared by two different hot isostatic pressing processes. Chin J Rare Met, 2016, 40(2): 97

    黄俊, 薛鹏举, 蔡超, 等. 两种热等静压工艺对Ti6Al4V合金力学性能影响的研究. 稀有金属, 2016, 40(2): 97
    [38] Cai C, Pan K K, Teng Q, et al. Simultaneously enhanced strength and ductility of FGH4097 nickel-based alloy via a novel hot isostatic pressing strategy. Mater Sci Eng:A, 2019, 760: 19 doi: 10.1016/j.msea.2019.05.081
    [39] Chang L T, Sun W R, Cui Y Y, et al. Preparation of hot-isostatic-pressed powder metallurgy superalloy Inconel 718 free of prior particle boundaries. Mater Sci Eng A, 2017, 682: 341 doi: 10.1016/j.msea.2016.11.031
    [40] Rao G A, Srinivas M, Sarma D S. Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718. Mater Sci Eng A, 2006, 435: 84
    [41] Liu C Y, Wang S Y, Li F G, et al. The procedure and mechanics research of extrusion deformation for FGH96 alloy. Forg Equip Manufact Technol, 2009, 44(1): 84 doi: 10.3969/j.issn.1672-0121.2009.01.031

    刘趁意, 王淑云, 李付国, 等. 粉末高温合金挤压变形组织及变形机理研究. 锻压装备与制造技术, 2009, 44(1): 84 doi: 10.3969/j.issn.1672-0121.2009.01.031
    [42] Qin Z J, Liu C Z, Wang Z, et al. Formation and microstructure evolution of precipitation on prior particle boundaries in P/M nickel-base superalloys. Chin J Nonferrous Met, 2016, 26(1): 50 doi: 10.19476/j.ysxb.1004.0609.2016.01.007

    秦子珺, 刘琛仄, 王子, 等. 镍基粉末高温合金原始颗粒边界形成及组织演化特征. 中国有色金属学报, 2016, 26(1): 50 doi: 10.19476/j.ysxb.1004.0609.2016.01.007
    [43] He G A, Yang C, Liu F, et al. Effects of hot extrusion on microstructures and hot deformation behavior of powder metallurgy Ni-base superalloy PM-0002. Mater Mech Eng, 2016, 40(4): 65

    何国爱, 杨川, 刘锋, 等. 热挤压对粉末冶金PM-0002镍基高温合金组织及热变形行为的影响. 机械工程材料, 2016, 40(4): 65
    [44] Fu H, Wang M Y, Ji Z, et al. Effect of thermal deformation on prior particle boundary of FGH96 superalloy. Powder Metall Technol, 2018, 36(3): 201

    傅豪, 王梦雅, 纪箴, 等. 热变形对FGH96高温合金原始颗粒边界的影响. 粉末冶金技术, 2018, 36(3): 201
    [45] Higashi M, Kanno N. Evaluation of hot workability of powder metallurgy Ni-based superalloy with different initial microstructures. Metall Mater Trans A, 2020, 52(1): 1
    [46] Song F Y, Zhang J, Guo H M, et al. Research on application of hot isostatic pressing technology in the field of nickel-based cast superalloys. J Mater Eng, 2021, 49(1): 65 doi: 10.11868/j.issn.1001-4381.2020.000396

    宋富阳, 张剑, 郭会明, 等. 热等静压技术在镍基铸造高温合金领域的应用研究. 材料工程, 2021, 49(1): 65 doi: 10.11868/j.issn.1001-4381.2020.000396
    [47] Huang X N, Lang L H, Wang G. Effect of HIP post-treatment on the HIPed Ti6Al4V powder compacts. Powder Metall, 2019, 62(1): 8 doi: 10.1080/00325899.2018.1534425
  • 加载中
图(7)
计量
  • 文章访问数:  2178
  • HTML全文浏览量:  154
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-19
  • 刊出日期:  2023-10-28

目录

    /

    返回文章
    返回